Skip to main content

Sensible Initialization of a Computational Evolution System Using Expert Knowledge for Epistasis Analysis in Human Genetics

  • Chapter
Exploitation of Linkage Learning in Evolutionary Algorithms

Part of the book series: Evolutionary Learning and Optimization ((ALO,volume 3))

Abstract

High throughput sequencing technologies now routinely measure over one million DNA sequence variations on the human genome. Analyses of these data have demonstrated that single sequence variants predictive of common human disease are rare. Instead, disease risk is thought to be the result of a confluence of many genes acting in concert, often with no statistically significant individual effects. The detection and characterization of such gene-gene interactions that predispose for human disease is a computationally daunting task, since the search space grows exponentially with the number of measured genetic variations. Traditional artificial evolution methods have offered some promise in this problem domain, but they are plagued by the lack of marginal effects of individual sequence variants. To address this problem, we have developed a computational evolution system that allows for the evolution of solutions and solution operators of arbitrary complexity. In this study, we incorporate a linkage learning technique into the population initialization method of the computational evolution system and investigate its influence on the ability to detect and characterize gene-gene interactions in synthetic data sets. These data sets are generated to exhibit characteristics of real genomewide association studies for purely epistatic diseases with various heritabilities. Our results demonstrate that incorporating linkage learning in population initialization via expert knowledge sources improves classification accuracy, enhancing our ability to automate the discovery and characterization of the genetic causes of common human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Képès, F., Lefort, V., Miller, J.F., Radman, M., Ramsden, J.J.: From artificial evolution to computational evolution: a research agenda. Nature Reviews Genetics 7, 729–735 (2006)

    Article  Google Scholar 

  2. Culverhouse, R., Suarez, B.K., Lin, J., Reich, T.: A perspective on epistasis: limits of models displaying no main effect. American Journal of Human Genetics 70(2), 461–471 (2002)

    Article  Google Scholar 

  3. Eppstein, M.J., Payne, J.L., White, B.C., Moore, J.H.: Genomic mining for complex disease traits with ‘random chemistry’. Genetic Programming and Evolvable Machines 8, 395–411 (2007)

    Article  Google Scholar 

  4. Greene, C.S., Hill, D.P., Moore, J.H.: Environmental noise improves epistasis models of genetic data discovered using a computational evolution system. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1785–1786 (2009)

    Google Scholar 

  5. Greene, C.S., Penrod, N.M., Kiralis, J., Moore, J.H.: Spatially uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Mining 2(5) (2009)

    Google Scholar 

  6. Greene, C.S., White, B.C., Moore, J.H.: An expert knowledge-guided mutation operator for genome-wide genetic analysis using genetic programming. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 30–40. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Greene, C.S., White, B.C., Moore, J.H.: Sensible initialization using expert knowledge for genome-wide analysis of epistasis using genetic programming. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1289–1296 (2009)

    Google Scholar 

  8. Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6, 95–108 (2005)

    Article  Google Scholar 

  9. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Google Scholar 

  10. Lucek, P.R., Ott, J.: Neural network analysis of complex traits. Genetic Epidemiology 14, 1101–1106 (1997)

    Article  Google Scholar 

  11. Moore, J.H., Greene, C.S., Andrews, P.C., White, B.C.: Does complexity matter? Artificial evolution, computational evolution, and the genetic analysis of epistasis in common human diseases. In: Genetic Programming Theory and Practice VI, ch. 9. Springer, Heidelberg (2009)

    Google Scholar 

  12. Moore, J.H., Parker, J.S., Olsen, N.J., Aune, T.M.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genetic Epidemiology 23, 57–69 (2002)

    Article  Google Scholar 

  13. Moore, J.H., Ritchie, M.D.: The challenges of whole-genome approaches to common diseases. Journal of the American Medical Association 291(13), 1642–1643 (2004)

    Article  Google Scholar 

  14. Moore, J.H., White, B.C.: Exploiting expert knowledge in genetic programming for genome-wide genetic analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. In: Genetic Programming Theory and Practice IV, ch. 2. Springer, Heidelberg (2007)

    Google Scholar 

  16. Moore, J.H., White, B.C.: Tuning ReliefF for genome-wide genetic analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69(1), 138–147 (2001)

    Article  Google Scholar 

  18. Wagner, A.: Robustness and evolvability in living systems. Princeton University Press, Princeton (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Payne, J.L., Greene, C.S., Hill, D.P., Moore, J.H. (2010). Sensible Initialization of a Computational Evolution System Using Expert Knowledge for Epistasis Analysis in Human Genetics. In: Chen, Yp. (eds) Exploitation of Linkage Learning in Evolutionary Algorithms. Evolutionary Learning and Optimization, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12834-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12834-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12833-2

  • Online ISBN: 978-3-642-12834-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics