Skip to main content

Dagger Categories and Formal Distributions

  • Chapter
  • First Online:
New Structures for Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 813))

Abstract

A nuclear ideal is an ideal contained in an ambient monoidal dagger category which has all of the structure of a compact closed category, except that it lacks identities. Intuitively, the identities are too “singular” to live in the ideal. Typical examples include the ideal of Hilbert-Schmidt maps contained in the category of Hilbert spaces, or the ideal of test functions contained in the category DRel of tame distributions on Euclidean space.

In this paper, we construct a category of tame formal distributions with coefficients in an associative algebra. We show that there is a formal analogue of the nuclear ideal constructed in DRel, and hence there is a partial trace operation on the category. By taking formal distributions with coefficients in the dual of a cocommutative Hopf algebra, we obtain a categorical generalization of the Borcherds’ notion of elementary vertex group. Furthermore, when considering the algebra of symmetric endomorphisms of an object in such a category, we obtain a vertex group in Borcherds’ sense. The nuclear ideal structure induces a partial trace operator on such vertex groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored *-categories. J. Pure Appl. Algebra 143, 3–47(1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, IEEE Computer Society, pp. 415–425 (2004)

    Google Scholar 

  3. Abramsky, S., Coecke, B.: Abstract physical traces. Theory Appl. Categories 14, 111–124 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf. Comput. 111(1), 53–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abramsky, S.: Abstract scalars, loops, and free traced and strongly compact closed categories. In: Proceedings of CALCO 2005, Springer Lecture Notes in Computer Science, vol. 3629, pp. 1–31 (2005)

    Google Scholar 

  6. M.A. Al-Gwaiz: Theory of Distributions. Dekker Pure and Applied Mathematics. Dekker, New York (1992)

    Google Scholar 

  7. Bennett, C., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Feedback for linearly distributive categories: Traces and fixpoints. J. Pure Appl. Algebra 154, 27–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borcherds, R.: Vertex algebras. Preprint, q-alg/9706008. Also appeared in Topological field theory, primitive forms and related topics (Kyoto, 1996) Progress in Mathematics, vol. 60. Birkhäuser Boston, (1998)

    Google Scholar 

  10. Chuang, I., Nielsen, M., Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Coecke, B., Pavlovic, D.: Quantum measurements without sums. To appear in: Chen, G., Kauffman, L., Lomonaco, S. (eds.) The Mathematics of Quantum Computation and Technology, Taylor and Francis, Hoboken (2006)

    Google Scholar 

  12. Coecke, B., Paquette, E., Pavlovic, D.: POVMs and Naimark’s theorem without sums, preprint (2006)

    Google Scholar 

  13. Doplicher, S., Roberts, J.: A new duality theory for compact groups. Inventiones Math. 98, 157–218 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ghez, P., Lima, R., Roberts, J.: w*-categories. Pacific J. Math. 120, 79–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (1996)

    Book  MATH  Google Scholar 

  16. Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucleaires. AMS Memoirs. American Mathematical Society (1955)

    Google Scholar 

  17. Higgs, D.A., Rowe, K.: Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57, 67–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac, V.: Vertex algebras for beginners. University Lecture Series, American Mathematical Society (1997)

    Google Scholar 

  19. Kac, V.: Formal distributions algebras and conformal algebras. In: Proceeding of te 12th International Congress of Mathematical Physics, pp. 80–97 (1997). q-alg/9709027

    Google Scholar 

  20. Kac, V.: The idea of locality, preprint q-alg/9709008

    Google Scholar 

  21. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras. Academic Press, New York (1983)

    MATH  Google Scholar 

  22. Lian, B., Zuckerman, G.: Commutative quantum operator algebras. J. Pure Appl. Algebra 100, 117–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  24. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957)

    MATH  Google Scholar 

  25. Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005), Chicago. ENTCS 170, pp. 139–163 (2007)

    Google Scholar 

  26. Snydal, C.: Equivalence of Borcherds G-vertex algebras and axiomatic vertex algebras, preprint math.QA/9904104

    Google Scholar 

  27. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Blute or P. Panangaden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Blute, R., Panangaden, P. (2010). Dagger Categories and Formal Distributions. In: Coecke, B. (eds) New Structures for Physics. Lecture Notes in Physics, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12821-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12821-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12820-2

  • Online ISBN: 978-3-642-12821-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics