Skip to main content

Quality of Visual Experience for 3D Presentation - Stereoscopic Image

  • Chapter
High-Quality Visual Experience

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Three-dimensional television (3DTV) technology is becoming increasingly popular, as it can provide high quality and immersive experience to end users. Stereoscopic imaging is a technique capable of recoding 3D visual information or creating the illusion of depth. Most 3D compression schemes are developed for stereoscopic images including applying traditional two-dimensional (2D) compression techniques, and considering theories of binocular suppression as well. The compressed stereoscopic content is delivered to customers through communication channels. However, both compression and transmission errors may degrade the quality of stereoscopic images. Subjective quality assessment is the most accurate way to evaluate the quality of visual presentations in either 2D or 3D modality, even though it is time-consuming. This chapter will offer an introduction to related issues in perceptual quality assessment for stereoscopic images. Our results are a subjective quality experiment on stereoscopic images and focusing on four typical distortion types including Gaussian blurring, JPEG compression, JPEG2000 compression, and white noise. Furthermore, although many 2D image quality metrics have been proposed that work well on 2D images, developing quality metrics for 3D visual content is almost an unexplored issue. Therefore, this chapter will further introduce some well-known 2D image quality metrics and investigate their capabilities in stereoscopic image quality assessments. As an important attribute of stereoscopic images, disparity refers to the difference in image location of an object seen by the left and right eyes, which has a significant impact on the stereoscopic image quality assessment. Thus, a study on an integration of the disparity information in quality assessment is presented. The experimental results demonstrated that better performance can be achieved if the disparity information and original images are combined appropriately in the stereoscopic image quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meesters, L.M.J., Ijsselsteijn, W.A., Seuntiëns, P.J.H.: A survey of perceptual evaluation and requirements of three-dimensional TV. IEEE Trans. Circuits and Systems for Video Technology 14(3), 381–391 (2004)

    Article  Google Scholar 

  2. Tam, W.J., Stelmach, L.B., Corriveau, P.J.: Psychovisual aspects of viewing stereoscopic video sequences. In: Proc. SPIE Stereoscopic Displays and Virtual Reality System V, San Jose, CA, USA (1998)

    Google Scholar 

  3. Pastoor, S.: Human factors of 3D displays in advanced image communications. Displays 14(3), 150–157 (1993)

    Article  Google Scholar 

  4. Stelmach, L., Tam, W.J., Meegan, D., Vincent, A.: Stereo image quality: effects of spatio-temporal resolution. IEEE Trans. Circuits and Systems for Video Technology 10(2), 188–193 (2000)

    Article  Google Scholar 

  5. Ijsselsteijn, W.A., de, R.H., Vliegen, J.: Subjective evaluation of stereoscopic images: effects of camera parameters and display duration. IEEE Trans. Circuits and Systems for Video Technology 10(2), 225–233 (2000)

    Article  Google Scholar 

  6. Meegan, D.V.: Unequal weighting of monocular inputs in binocular combination: implications for the compression of stereoscopic imagery. Journal Experimental Psychology: Applied 7(2), 143–153 (2001)

    Article  Google Scholar 

  7. Seuntiens, P., Meesters, L., Ljsselsteijn, A.: Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Trans. Applied Perception 3(2), 95–109 (2006)

    Article  Google Scholar 

  8. Kalva, H., Christodoulou, L., Mayron, L.M., Marques, O., Furht, B.: Design and evaluation of a 3D video system based on H.264 view coding. In: Proc. ACM Network and operating systems support for digital audio and video, Newport, Rhode Island, USA (2006)

    Google Scholar 

  9. Woods, A., Docherty, T., Koch, R.: Image distortions in stereoscopic video systems. In: Proc. SPIE Stereoscopic Displays and Applications IV, San Jose, CA, USA (1993)

    Google Scholar 

  10. Yamanoue, H., Okui, M., Okano, F.: Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Trans. Circuits and Systems for Video Technology 16(6), 744–752 (2006)

    Article  Google Scholar 

  11. Boev, A., Gotchev, A., Eqiazarian, K.: Crosstalk Measurement Methodology for Auto-Stereoscopic Screens. In: Proc. IEEE 3DTV, Kos, Greece (2007)

    Google Scholar 

  12. Seuntiens, P.J.H., Meesters, L.M.J., Ijsselsteijn, W.A.: Perceptual attributes of crosstalk in 3D images. Displays 26(4-5), 177–183 (2005)

    Article  Google Scholar 

  13. Kim, D., Min, D., Oh, J., Jeon, S., Sohn, K.: Depth map quality metric for three-dimensional video. In: Proc. SPIE Stereoscopic Displays and Applications XX, San Jose, CA, USA (2009)

    Google Scholar 

  14. Hewage, C.T.E.R., Worrall, S.T., Dogan, S., Kondoz, A.M.: Prediction of stereoscopic video quality using objective quality models of 2-D video. Electronics Letters 44(16), 963–965 (2008)

    Article  Google Scholar 

  15. Pinson, M., Wolf, S.: A new standardized method for objectively measuring video quality. IEEE Trans. Broadcasting 50(33), 312–322 (2004)

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C., Sheikh, H.R., Simonselli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  17. Campisi, P., Callet, P.L., Marini, E.: Stereoscopic images quality assessment. In: Proc. 15th European Signal Processing Conference (EUSIPCO), Poznan, Poland (2007)

    Google Scholar 

  18. Benoit, A., Callet, P.L., Campisi, P., Cousseau, R.: Quality Assessment of Stereoscopic Images. EURASIP Journal Image and Video Processing (Article ID 659024) (2008), doi:10.1155/2008/659024

    Google Scholar 

  19. Jiachen, Y., Chunping, H., Zhou, Y., Zhang, Z., Guo, J.: Objective quality assessment method of stereo images. In: Proc. IEEE 3DTV, Potsdam, Germany (2009)

    Google Scholar 

  20. Boev, A., Gotchev, A., Eqiazarian, K., Aksay, A., Akar, G.B.: Towards compound stereo-video quality metric: a specific encoder-based framework. In: Proc. IEEE Southwest Symposium Image Analysis and Interpretation, Denver, CO, USA (2006)

    Google Scholar 

  21. Olsson, R., Sjostrom, M.A.: Depth dependent quality metric for evaluation of coded integral imaging based 3D-images. In: Proc. IEEE 3DTV, Kos, Greece (2007)

    Google Scholar 

  22. Gorley, P., Holliman, N.: Stereoscopic image quality metrics and compression. In: Proc. SPIE Stereoscopic Displays and Applications XIX, San Jose, CA, USA (2008)

    Google Scholar 

  23. Sazzad, Z.M.P., Yamanaka, S., Kawayoke, Y., Horita, Y.: Stereoscopic image quality prediction. In: Proc. IEEE QoMEX, San Diego, CA, USA (2009)

    Google Scholar 

  24. Akar, G.B., Tekalp, A.M., Fehn, C., Civanlar, M.R.: Transport Methods in 3DTV: A Survey. IEEE Trans. Circuits and Systems for Video Technology 17(11), 1622–1630 (2007)

    Article  Google Scholar 

  25. Barkowsky, M., Cousseau, R., Callet, P.L.: Influence of depth rendering on the quality of experience for an autostereoscopic display. In: Proc. IEEE QoMEX, San Diego, CA, USA (2009)

    Google Scholar 

  26. Hang, S., Xun, C., Er, G.: Objective quality assessment of depth image based rendering in 3DTV system. In: Proc. IEEE 3DTV, Potsdam, Germany (2009)

    Google Scholar 

  27. Wang, X., Yu, M., Yang, Y., Jiang, G.: Research on subjective stereoscopic image quality assessment. In: Proc. SPIE Multimedia Content Access: Algorithm and Systems III, San Jose, CA, USA (2009)

    Google Scholar 

  28. Middlebury Stereo Vision Page, http://vision.middlebury.edu/stereo

  29. Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Norwell (2001)

    Google Scholar 

  30. ITU-R Recommendation. BT.500-10 Methodology for the subjective assessment of the quality of television. ITU-R, Geneva, Switzerland (2002)

    Google Scholar 

  31. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Processing 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proc. IEEE Asilomar Conference Signals, Systems and Computers, Pacific Grove, CA, USA (2003)

    Google Scholar 

  33. Chandler, D.M., Hemami, S.S.: VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Processing 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  34. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Processing 15(2), 430–444 (2006)

    Article  Google Scholar 

  35. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9(3), 81–84 (2002)

    Article  Google Scholar 

  36. Sheikh, H.R., Bovik, A.C.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Processing 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  37. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: A flexible architecture for multi-scale derivative computation. In: Proc. IEEE ICIP, Washington, DC, USA (1995)

    Google Scholar 

  38. Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image quality assessment based on a degradation model. IEEE Trans. Image Processing 9(4), 636–650 (2000)

    Article  Google Scholar 

  39. Ponomarenko, N., Battisti, F., Egiazarian, K., Carli, M., Astola, J., Lukin, V.: On between-coefficient contrast masking of DCT basis functions. In: CD-ROM Proc. VPQM, Scottsdale, Arizona, USA (2007)

    Google Scholar 

  40. Yang, X.K., Ling, W.S., Lu, Z.K., Ong, E.P., Yao, S.S.: Just noticeable distortion model and its applications in video coding. Signal Processing: Image Communication 20(7), 662–680 (2005)

    Article  Google Scholar 

  41. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database Release 2, http://live.ece.utexas.edu/research/quality

  42. VQEG: Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment (2000), http://www.vqeg.org

  43. Qian, N.: Binocular Disparity and the Perception of Depth. Neuron 18, 359–368 (1997)

    Article  Google Scholar 

  44. You, J., Xing, L., Perkis, A., Wang, X.: Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis. In: Proc. VPQM, Scottsdale, Arizona, USA (2010)

    Google Scholar 

  45. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. Journal Computer Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, J., Jiang, G., Xing, L., Perkis, A. (2010). Quality of Visual Experience for 3D Presentation - Stereoscopic Image. In: Mrak, M., Grgic, M., Kunt, M. (eds) High-Quality Visual Experience. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12802-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12802-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12801-1

  • Online ISBN: 978-3-642-12802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics