Skip to main content

Stereo Correspondence in Information Retrieval

  • Chapter
High-Quality Visual Experience

Part of the book series: Signals and Communication Technology ((SCT))

  • 1230 Accesses

Abstract

Stereo correspondence is a very important problem in information retrieval. Optimal stereo correspondence algorithms are used to generate optimal disparity maps as well as accurate 3-D shapes from 2-D image inputs. Most established algorithms utilise local measurements such as image intensity (or colour) and phase, and then integrate the data from multiple pixels using a smoothness constraint. This strategy applies fixed or adaptive windows to achieve certain performance. To build up appropriate stereo correspondences, a global approach must be implemented in the way that a global energy or cost function is designed by considering template matching, smoothness constraints and/or penalties for data loss (e.g. occlusion). This energy function usually works with optimisation methods like dynamic programming, simulated annealing and graph cuts to reach the correspondence. In this book chapter, some recently developed stereo correspondence algorithms will be summarised. In particular, maximum likelihood estimation-based, segment-based, connectivity-based and wide-baseline stereo algorithms using descriptors will be introduced. Their performance in different image pairs will be demonstrated and compared. Finally, future research developments of these algorithms will be pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to obejct matching in videos. In: Proc. of Ninth IEEE International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  2. Davis, M.: An iconic visual language for video annotation. In: Proc. of IEEE Symposium on Visual Language, pp. 196–202 (1993)

    Google Scholar 

  3. Rushes project deliverable D5, requirement analysis and use-cases definition for professional content creators or providers and home-users (2007), http://www.rushes-project.eu/upload/Deliverables/D5_WP1_ETB_v04.pdf

  4. Tangelder, J., Veltkamp, R.: A survey of content based 3d shape retrieval methods. In: Proc. of International Conference on Shape Modeling, pp. 145–156 (2004)

    Google Scholar 

  5. Ohbuchi, R., Kobayashi, J.: Unsupervised learning from a corpus for shape-based 3d model retrieval. In: Proc. of the 8th ACM international workshop on Multimedia information retrieval, New York, NY, USA, pp. 163–172 (2006)

    Google Scholar 

  6. Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Computer Vision and Image Understanding 100(3), 416–441 (2005)

    Article  Google Scholar 

  7. Zhou, H., Wallace, A., Green, P.: A multistage filtering technique to detect hazards on the ground plane. Pattern Recognition Letters 24(9-10), 1453–1461 (2003)

    Article  MATH  Google Scholar 

  8. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proc. of 18th International Conference on Pattern Recognition, pp. 15–18 (2006)

    Google Scholar 

  9. Deng, Y., Yang, Q., Lin, X., Tang, X.: A symmetric patch-based correspondence model for occlusion handling. In: Proc. of the Tenth IEEE International Conference on Computer Vision, pp. 1316–1322 (2005)

    Google Scholar 

  10. Tao, H., Sawhney, H., Kumar, R.: A global matching framework for stereo computation. In: Proc. of Ninth IEEE International Conference on Computer Vision, pp. 532–539 (2001)

    Google Scholar 

  11. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)

    Article  Google Scholar 

  12. Zhou, H., Sadka, A., Jiang, M.: 3d inference and modelling for video retrieval. In: Proc. of Ninth International Workshop on Image Analysis for Multimedia Interactive Services, pp. 84–87 (2008)

    Google Scholar 

  13. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(2), 150–162 (1994)

    Article  Google Scholar 

  14. Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: Proc. of the Sixth International Conference on Computer Vision, p. 492 (1998)

    Google Scholar 

  15. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Narayanan, P., Rander, P., Kanade, T.: Constructing virtual worlds using dense stereo. In: Proc. of the Sixth International Conference on Computer Vision, p. 3 (1998)

    Google Scholar 

  17. Hoff, W., Ahuja, N.: Surfaces from stereo: Integrating feature matching, disparity estimation, and contour detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 121–136 (1989)

    Article  Google Scholar 

  18. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1988)

    Article  MathSciNet  Google Scholar 

  19. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Alvey Vision Conference, pp. 47–152 (1988)

    Google Scholar 

  20. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  21. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  22. Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  23. Ogale, A., Aloimonos, Y.: Shape and the stereo correspondence problem. Int. J. Comput. Vision 65(3), 147–162 (2005)

    Article  Google Scholar 

  24. Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 993–1008 (2003)

    Article  Google Scholar 

  25. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  26. Baker, H.: Depth from edge and intensity based stereo. Ph.D. thesis, Champaign, IL, USA (1981)

    Google Scholar 

  27. Strecha, C., Tuytelaars, T., Gool, L.V.: Dense matching of multiple wide-baseline views. In: Proc. of the Ninth IEEE International Conference on Computer Vision, p. 1194 (2003)

    Google Scholar 

  28. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: CVPR (2008)

    Google Scholar 

  29. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  30. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  31. Yao, J., Cham, W.K.: 3d modeling and rendering from multiple wide-baseline images by match propagation. Signal Processing: Image Communication 21(6), 506–518 (2006)

    Article  Google Scholar 

  32. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, H., Sadka, A.H. (2010). Stereo Correspondence in Information Retrieval. In: Mrak, M., Grgic, M., Kunt, M. (eds) High-Quality Visual Experience. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12802-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12802-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12801-1

  • Online ISBN: 978-3-642-12802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics