Skip to main content

The Role of Viruses in the Genesis of Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

A proportion of cases of classical Hodgkin lymphoma (cHL) are associated with the Epstein–Barr virus (EBV). In these cases, EBV is present in all the Hodgkin and Reed–Sternberg (HRS) cells, the infection is clonal, and EBV proteins and noncoding RNAs are expressed. The known biological functions of two of these EBV proteins, LMP1 and LMP2A, suggest that they are likely to play a key role in the survival and reprogramming of HRS cells. EBV-associated and nonassociated cHL cases have distinct demographic features and risk factors for disease development; differences in the molecular pathogenesis of the two groups of cases are also emerging. EBV-associated cases are more common in early childhood and older adult age groups and account for only a quarter or less of the cases in the young adult incidence peak, which is characteristic of industrialized countries. Epidemiological evidence suggests that delayed exposure to a common childhood infectious agent may be involved in the etiology of young adult cHL. Herpesviruses and polyomaviruses are candidate agents but there is currently no evidence that members of the these virus families, with the exception of EBV, are directly involved. Modern molecular methods of virus discovery should help to determine whether a hitherto unknown virus is involved in EBV-negative cHL; this is important since identification of such an agent would open up possibilities for disease prevention as well as novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BART:

BamHI A rightward transcripts

cHL:

Classical Hodgkin lymphoma

EBER:

EBV-encoded small RNAs

EBNA:

EBV nuclear antigen

EBV:

Epstein–Barr virus

HHV:

Human herpesvirus

HL:

Hodgkin lymphoma

HLA:

Human leukocyte antigen

HRS:

Hodgkin and Reed–Sternberg

LMP:

Latent membrane protein

MCV:

Merkel cell polyomavirus

MV:

Measles virus

SNP:

Single nucleotide polymorphism

TTV:

Torque teno virus

References

  1. MacMahon B. Epidemiological evidence of the nature of Hodgkin’s disease. Cancer. 1957;10:1045–54.

    Article  PubMed  CAS  Google Scholar 

  2. MacMahon B. Epidemiology of Hodgkin’s disease. Cancer Res. 1966;26:1189–201.

    PubMed  CAS  Google Scholar 

  3. Alexander FE, McKinney PA, Williams J, et al. Epidemiological evidence for the “two-disease hypothesis” in Hodgkin’s disease. Int J Epidemiol. 1991;20:354–61.

    Article  PubMed  CAS  Google Scholar 

  4. Gutensohn NM. Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the “two-disease hypothesis”. Cancer Treat Rep. 1982;66:689–95.

    PubMed  CAS  Google Scholar 

  5. Chang ET, Zheng T, Weir EG, et al. Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case-control study. Cancer Epidemiol Biomark Prev. 2004;13:1361–70.

    Google Scholar 

  6. Gutensohn NM, Shapiro DS. Social class risk factors among children with Hodgkin’s disease. Int J Cancer. 1982;30:433–5.

    Article  PubMed  CAS  Google Scholar 

  7. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.

    Article  PubMed  CAS  Google Scholar 

  8. Jarrett RF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7:S5–S10.

    Article  Google Scholar 

  9. Jarrett RF, Gallagher A, Jones DB, et al. Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol. 1991;44:844–8.

    Article  PubMed  CAS  Google Scholar 

  10. Kieff E, Rickinson AB. Epstein-Barr virus and its replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2603–54.

    Google Scholar 

  11. Rickinson AB, Kieff E. Epstein-Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2655–700.

    Google Scholar 

  12. Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.

    Article  PubMed  CAS  Google Scholar 

  13. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2006;2:e23.

    Article  PubMed  CAS  Google Scholar 

  14. Cosmopoulos K, Pegtel M, Hawkins J, et al. Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol. 2009;83:2357–67.

    Article  PubMed  CAS  Google Scholar 

  15. Edwards RH, Marquitz AR, Raab-Traub N. Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol. 2008;82:9094–106.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu JY, Pfuhl T, Motsch N, et al. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol. 2009;83:3333–41.

    Article  PubMed  CAS  Google Scholar 

  17. Hislop AD, Taylor GS, Sauce D, et al. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.

    Article  PubMed  CAS  Google Scholar 

  18. Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48.

    Article  PubMed  CAS  Google Scholar 

  19. Gledhill S, Gallagher A, Jones DB, et al. Viral involvement in Hodgkin’s disease: detection of clonal type A Epstein-Barr virus genomes in tumour samples. Br J Cancer. 1991;64:227–32.

    Article  PubMed  CAS  Google Scholar 

  20. Pallesen G, Hamilton-Dutoit SJ, Rowe M, et al. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337:320–2.

    Article  PubMed  CAS  Google Scholar 

  21. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129:86–91.

    PubMed  CAS  Google Scholar 

  22. Wu TC, Mann RB, Charache P, et al. Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer. 1990;46:801–4.

    Article  PubMed  CAS  Google Scholar 

  23. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177:339–49.

    Article  PubMed  CAS  Google Scholar 

  24. Grasser FA, Murray PG, Kremmer E, et al. Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood. 1994;84:3792–8.

    PubMed  CAS  Google Scholar 

  25. Niedobitek G, Kremmer E, Herbst H, et al. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997;90:1664–72.

    PubMed  CAS  Google Scholar 

  26. Kuppers R. Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2009:491–6.

    Google Scholar 

  27. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.

    Article  PubMed  CAS  Google Scholar 

  28. Kuppers R, Klein U, Schwering I, et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest. 2003;111:529–37.

    PubMed  CAS  Google Scholar 

  29. Schwering I, Brauninger A, Klein U, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505–12.

    Article  PubMed  CAS  Google Scholar 

  30. Bechtel D, Kurth J, Unkel C, et al. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106:4345–50.

    Article  PubMed  CAS  Google Scholar 

  31. Chaganti S, Bell AI, Pastor NB, et al. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood. 2005;106:4249–52.

    Article  PubMed  CAS  Google Scholar 

  32. Mancao C, Altmann M, Jungnickel B, et al. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood. 2005;106:4339–44.

    Article  PubMed  CAS  Google Scholar 

  33. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110:3715–21.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson LJ, Longnecker R. Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood. 2009;113:108–16.

    Article  PubMed  CAS  Google Scholar 

  35. Caldwell RG, Brown RC, Longnecker R. Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol. 2000;74:1101–13.

    Article  PubMed  CAS  Google Scholar 

  36. Portis T, Longnecker R. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol. 2003;77:105–14.

    Article  PubMed  CAS  Google Scholar 

  37. Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;102:4166–78.

    Article  PubMed  CAS  Google Scholar 

  38. Devergne O, Cahir McFarland ED, Mosialos G, et al. Role of the TRAF binding site and NF-kB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol. 1998;72:7900–8.

    PubMed  CAS  Google Scholar 

  39. Eliopoulos AG, Gallagher NJ, Blake SM, et al. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 1999;274:16085–96.

    Article  PubMed  CAS  Google Scholar 

  40. Eliopoulos AG, Young LS. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene. 1998;16:1731–42.

    Article  PubMed  CAS  Google Scholar 

  41. Izumi KM, Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kB. Proc Natl Acad Sci U S A. 1997;94:12592–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kieser A, Kilger E, Gires O, et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 1997;16:6478–85.

    Article  PubMed  CAS  Google Scholar 

  43. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961–9.

    Article  PubMed  CAS  Google Scholar 

  44. Dutton A, O’Neil JD, Milner AE, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A. 2004;101:6611–6.

    Article  PubMed  CAS  Google Scholar 

  45. Kashkar H, Haefs C, Shin H, et al. XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med. 2003;198:341–7.

    Article  PubMed  CAS  Google Scholar 

  46. Nanbo A, Sugden A, Sugden B. The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J. 2007;26:4252–62.

    Article  PubMed  CAS  Google Scholar 

  47. Kang MS, Lu H, Yasui T, et al. Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci U S A. 2005;102:820–5.

    Article  PubMed  CAS  Google Scholar 

  48. Kang MS, Soni V, Bronson R, et al. Epstein-Barr virus nuclear antigen 1 does not cause lymphoma in C57BL/6J mice. J Virol. 2008;82:4180–3.

    Article  PubMed  CAS  Google Scholar 

  49. Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A. 2003;100:14269–74.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996;15:3117–26.

    PubMed  CAS  Google Scholar 

  51. Yajima M, Kanda T, Takada K. Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 2005;79:4298–307.

    Article  PubMed  CAS  Google Scholar 

  52. Godshalk SE, Bhaduri-McIntosh S, Slack FJ. Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle. 2008;7:3595–600.

    Article  PubMed  CAS  Google Scholar 

  53. van den Berg A, Kroesen BJ, Kooistra K, et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosom Cancer. 2003;37:20–8.

    Article  PubMed  CAS  Google Scholar 

  54. Jarrett RF, Krajewski AS, Angus B, et al. The Scotland and Newcastle epidemiological study of Hodgkin’s disease: impact of histopathological review and EBV status on incidence estimates. J Clin Pathol. 2003;56:811–6.

    Article  PubMed  CAS  Google Scholar 

  55. Flavell K, Constandinou C, Lowe D, et al. Effect of material deprivation on Epstein-Barr virus infection in Hodgkin’s disease in the West Midlands. Br J Cancer. 1999;80:604–8.

    Article  PubMed  CAS  Google Scholar 

  56. Crawford DH, Macsween KF, Higgins CD, et al. A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis. 2006;43:276–82.

    Article  PubMed  Google Scholar 

  57. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82:1117–21.

    Article  PubMed  CAS  Google Scholar 

  58. Alexander FE, Lawrence DJ, Freeland J, et al. An epidemiologic study of index and family infectious mononucleosis and adult Hodgkin’s disease (HD): evidence for a specific association with EBV+ve HD in young adults. Int J Cancer. 2003;107:298–302.

    Article  PubMed  CAS  Google Scholar 

  59. Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324–32.

    Article  PubMed  CAS  Google Scholar 

  60. Hjalgrim H, Smedby KE, Rostgaard K, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67:2382–8.

    Article  PubMed  CAS  Google Scholar 

  61. Jarrett RF. Viruses and Hodgkin’s lymphoma. Ann Oncol. 2002;13(S1):23–9.

    Article  PubMed  Google Scholar 

  62. Glaser SL, Gulley ML, Clarke CA, et al. Racial/ethnic variation in EBV-positive classical Hodgkin lymphoma in California populations. Int J Cancer. 2008;123:1499–507.

    Article  PubMed  CAS  Google Scholar 

  63. Hors J, Dausset J. HLA and susceptibility to Hodgkin’s disease. Immunol Rev. 1983;70:167–92.

    Article  PubMed  CAS  Google Scholar 

  64. Diepstra A, Niens M, Vellenga E, et al. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet. 2005;365:2216–24.

    Article  PubMed  CAS  Google Scholar 

  65. Niens M, van den Berg A, Diepstra A, et al. The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol Biomark Prev. 2006;15:2280–4.

    Article  CAS  Google Scholar 

  66. Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV-positive Hodgkin lymphoma. Blood. 2007;110:3310–5.

    Article  PubMed  CAS  Google Scholar 

  67. Hjalgrim H, Rostgaard K, Johnson PC, et al. HLA-A alleles and infectious mononucleosis suggest critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2010;107(14):6400–5.

    Article  PubMed  CAS  Google Scholar 

  68. Brennan RM, Burrows SR. A mechanism for the HLA-A*01-associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood. 2008;112:2589–90.

    Article  PubMed  CAS  Google Scholar 

  69. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res. 2005;11:1467–73.

    Article  PubMed  Google Scholar 

  70. Chapman AL, Rickinson AB, Thomas WA, et al. Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin’s disease patients: implications for a T-cell-based therapy. Cancer Res. 2001;61:6219–26.

    PubMed  CAS  Google Scholar 

  71. Kelley TW, Pohlman B, Elson P, et al. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J Clin Pathol. 2007;128:958–65.

    Article  PubMed  Google Scholar 

  72. Oudejans JJ, Jiwa NM, Kummer JA, et al. Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood. 1997;89:1376–82.

    PubMed  CAS  Google Scholar 

  73. McAulay KA, Higgins CD, Macsween KF, et al. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest. 2007;117:3042–8.

    Article  PubMed  CAS  Google Scholar 

  74. Khan G, Lake A, Shield L, et al. Phenotype and frequency of Epstein-Barr virus-infected cells in pretreatment blood samples from patients with Hodgkin lymphoma. Br J Haematol. 2005;129:511–9.

    Article  PubMed  Google Scholar 

  75. Hochberg D, Souza T, Catalina M, et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol. 2004;78:5194–204.

    Article  PubMed  CAS  Google Scholar 

  76. Khan G, Miyashita EM, Yang B, et al. Is EBV persistence in vivo a model for B cell homeostasis? Immunity. 1996;5:173–9.

    Article  PubMed  CAS  Google Scholar 

  77. Brauninger A, Schmitz R, Bechtel D, et al. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer. 2006;118:1853–61.

    Article  PubMed  CAS  Google Scholar 

  78. Schmitz R, Hansmann ML, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9.

    Article  PubMed  CAS  Google Scholar 

  79. Cabannes E, Khan G, Aillet F, et al. Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkB a. Oncogene. 1999;18:3063–70.

    Article  PubMed  CAS  Google Scholar 

  80. Emmerich F, Meiser M, Hummel M, et al. Overexpression of IkBa without inhibition of NF-kB activity and mutations in the IkBa gene in Reed-Sternberg cells. Blood. 1999;94:3129–34.

    PubMed  CAS  Google Scholar 

  81. Jungnickel B, Staratschek-Jox A, Brauninger A, et al. Clonal deleterious mutations in the IkBa gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med. 2000;191:395–402.

    Article  PubMed  CAS  Google Scholar 

  82. Lake A, Shield LA, Cordano P, et al. Mutations of NFKBIA, encoding IkBa, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer. 2009;125:1334–42.

    Article  PubMed  CAS  Google Scholar 

  83. Clarke CA, Glaser SL, Dorfman RF, et al. Epstein-Barr virus and survival after Hodgkin disease in a population-based series of women. Cancer. 2001;91:1579–87.

    Article  PubMed  CAS  Google Scholar 

  84. Diepstra A, van Imhoff GW, Schaapveld M, et al. Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin’s lymphoma predicts adverse outcome in older adult patients. J Clin Oncol. 2009;27(23):3815–21.

    Article  PubMed  Google Scholar 

  85. Jarrett RF, Stark GL, White J, et al. Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. Blood. 2005;106:2444–51.

    Article  PubMed  CAS  Google Scholar 

  86. Keegan TH, Glaser SL, Clarke CA, et al. Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: a population-based study. J Clin Oncol. 2005;23:7604–13.

    Article  PubMed  Google Scholar 

  87. Gutensohn N, Cole P. Epidemiology of Hodgkin’s disease in the young. Int J Cancer. 1977;19:595–604.

    Article  PubMed  CAS  Google Scholar 

  88. Glaser SL, Keegan TH, Clarke CA, et al. Exposure to childhood infections and risk of Epstein-Barr virus-defined Hodgkin’s lymphoma in women. Int J Cancer. 2005;115(4):599–605.

    Article  PubMed  CAS  Google Scholar 

  89. Gallagher A, Perry J, Freeland J, et al. Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer. 2003;104:624–30.

    Article  PubMed  CAS  Google Scholar 

  90. Staratschek-Jox A, Kotkowski S, Belge G, et al. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol. 2000;156:209–16.

    Article  PubMed  CAS  Google Scholar 

  91. zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005;115:1–5.

    Article  PubMed  CAS  Google Scholar 

  92. Figueiredo CP, Franz-Vasconcelos HC, Giunta G, et al. Detection of Torque teno virus in Epstein-Barr virus positive and negative lymph nodes of patients with Hodgkin lymphoma. Leuk Lymphoma. 2007;48:731–5.

    Article  PubMed  Google Scholar 

  93. Garbuglia AR, Iezzi T, Capobianchi MR, et al. Detection of TT virus in lymph node biopsies of B-cell lymphoma and Hodgkin’s disease, and its association with EBV infection. Int J Immunopathol Pharmacol. 2003;16:109–18.

    PubMed  CAS  Google Scholar 

  94. Jelcic I, Hotz-Wagenblatt A, Hunziker A, et al. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78:7498–507.

    Article  PubMed  CAS  Google Scholar 

  95. Armstrong AA, Shield L, Gallagher A, et al. Lack of involvement of known oncogenic DNA viruses in Epstein-Barr virus-negative Hodgkin’s disease. Br J Cancer. 1998;77:1045–7.

    Article  PubMed  CAS  Google Scholar 

  96. Gallagher A, Perry J, Shield L, et al. Viruses and Hodgkin disease: no evidence of novel herpesviruses in non-EBV-associated lesions. Int J Cancer. 2002;101:259–64.

    Article  PubMed  CAS  Google Scholar 

  97. Schmidt CA, Oettle H, Peng R, et al. Presence of human b- and gamma-herpes virus DNA in Hodgkin’s disease. Leuk Res. 2000;24:865–70.

    Article  PubMed  CAS  Google Scholar 

  98. Hernandez-Losa J, Fedele CG, Pozo F, et al. Lack of association of polyomavirus and herpesvirus types 6 and 7 in human lymphomas. Cancer. 2005;103:293–8.

    Article  PubMed  Google Scholar 

  99. Lin SH, Yeh HM, Tzeng CH, et al. Immunoglobulin and T cell receptor b chain gene rearrangements and Epstein-Barr viral DNA in tissues of Hodgkin’s disease in Taiwan. Int J Hematol. 1993;57:251–7.

    PubMed  CAS  Google Scholar 

  100. Samoszuk M, Ravel J. Frequent detection of Epstein-Barr viral deoxyribonucleic acid and absence of cytomegalovirus deoxyribonucleic acid in Hodgkin’s disease and acquired immunodeficiency syndrome-related Hodgkin’s disease. Lab Invest. 1991;65:631–6.

    PubMed  CAS  Google Scholar 

  101. Berneman ZN, Torelli G, Luppi M, et al. Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann Hematol. 1998;77:275–8.

    Article  PubMed  CAS  Google Scholar 

  102. Ablashi DV, Josephs SF, Buchbinder A, et al. Human B-lymphotropic virus (human herpesvirus-6). J Virol Meth. 1988;21:29–48.

    Article  CAS  Google Scholar 

  103. Clark DA, Alexander FE, McKinney PA, et al. The seroepidemiology of human herpesvirus-6 (HHV-6) from a case-control study of leukaemia and lymphoma. Int J Cancer. 1990;45:829–33.

    Article  PubMed  CAS  Google Scholar 

  104. Torelli G, Marasca R, Luppi M, et al. Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin’s lymphomas by polymerase chain reaction. Blood. 1991;77:2251–8.

    PubMed  CAS  Google Scholar 

  105. Collot S, Petit B, Bordessoule D, et al. Real-time PCR for quantification of human herpesvirus 6 DNA from lymph nodes and saliva. J Clin Microbiol. 2002;40:2445–51.

    Article  PubMed  CAS  Google Scholar 

  106. Lacroix A, Jaccard A, Rouzioux C, et al. HHV-6 and EBV DNA quantitation in lymph nodes of 86 patients with Hodgkin’s lymphoma. J Med Virol. 2007;79:1349–56.

    Article  PubMed  CAS  Google Scholar 

  107. Valente G, Secchiero P, Lusso P, et al. Human herpesvirus 6 and Epstein-Barr virus in Hodgkin’s disease: a controlled study by polymerase chain reaction and in situ hybridization. Am J Pathol. 1996;149:1501–10.

    PubMed  CAS  Google Scholar 

  108. Khan G, Norton AJ, Slavin G. Epstein-Barr virus in Hodgkin disease. Relation to age and subtype. Cancer. 1993;71:3124–9.

    Article  PubMed  CAS  Google Scholar 

  109. Luppi M, Barozzi P, Garber R, et al. Expression of human herpesvirus-6 antigens in benign and malignant lymphoproliferative diseases. Am J Pathol. 1998;153:815–23.

    Article  PubMed  CAS  Google Scholar 

  110. Luppi M, Marasca R, Barozzi P, et al. Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol. 1993;40:44–52.

    Article  PubMed  CAS  Google Scholar 

  111. Clark DA, Ward KN. Importance of chromosomally integrated HHV-6A and -6B in the diagnosis of active HHV-6 infection. Herpes. 2008;15:28–32.

    PubMed  Google Scholar 

  112. Ehlers B, Borchers K, Grund C, et al. Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes. 1999;18:211–20.

    Article  PubMed  CAS  Google Scholar 

  113. Jarrett RF, Johnson D, Wilson KS, et al. Molecular methods for virus discovery. Dev Biol (Basel). 2006;123:77–88.

    CAS  Google Scholar 

  114. Allander T, Andreasson K, Gupta S, et al. Identification of a third human polyomavirus. J Virol. 2007;81:4130–6.

    Article  PubMed  CAS  Google Scholar 

  115. Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    Article  PubMed  CAS  Google Scholar 

  116. Gaynor AM, Nissen MD, Whiley DM, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007;3:e64.

    Article  PubMed  CAS  Google Scholar 

  117. Kean JM, Rao S, Wang M, et al. Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009;5:e1000363.

    Article  PubMed  CAS  Google Scholar 

  118. Knowles WA, Pipkin P, Andrews N, et al. Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol. 2003;71:115–23.

    Article  PubMed  Google Scholar 

  119. Tolstov YL, Pastrana DV, Feng H, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer. 2009;125:1250–6.

    Article  PubMed  CAS  Google Scholar 

  120. Kassem A, Schopflin A, Diaz C, et al. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res. 2008;68:5009–13.

    Article  PubMed  CAS  Google Scholar 

  121. Wilson KS, Gallagher A, Freeland JM, et al. Viruses and Hodgkin lymphoma: no evidence of polyomavirus genomes in tumor biopsies. Leuk Lymphoma. 2006;47:1315–21.

    Article  PubMed  CAS  Google Scholar 

  122. Shuda M, Arora R, Kwun HJ, et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer. 2009;125:1243–9.

    Article  PubMed  CAS  Google Scholar 

  123. Volter C, Hausen H, Alber D, et al. Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology. 1997;237:389–96.

    Article  PubMed  CAS  Google Scholar 

  124. Benharroch D, Shemer-Avni Y, Levy A, et al. New candidate virus in association with Hodgkin’s disease. Leuk Lymphoma. 2003;44:605–10.

    Article  PubMed  CAS  Google Scholar 

  125. Benharroch D, Shemer-Avni Y, Myint YY, et al. Measles virus: evidence of an association with Hodgkin’s disease. Br J Cancer. 2004;91:572–9.

    Article  PubMed  CAS  Google Scholar 

  126. Maggio E, Benharroch D, Gopas J, et al. Absence of measles virus genome and transcripts in Hodgkin-Reed/Sternberg cells of a cohort of Hodgkin lymphoma patients. Int J Cancer. 2007;121:448–53.

    Article  PubMed  CAS  Google Scholar 

  127. Wilson KS, Freeland JM, Gallagher A, et al. Measles virus and classical Hodgkin lymphoma: no evidence for a direct association. Int J Cancer. 2007;121:442–7.

    Article  PubMed  CAS  Google Scholar 

  128. Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med. 2008;358:991–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

To Scamp, my faithful old feline friend who died during the preparation of this manuscript. Thanks to Tina Rich for reading the manuscript. Work in our laboratory is supported by the Leukaemia Lymphoma Research and the Kay Kendall Leukaemia Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth F. Jarrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jarrett, R.F. (2011). The Role of Viruses in the Genesis of Hodgkin Lymphoma. In: Engert, A., Horning, S. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12780-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12780-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12779-3

  • Online ISBN: 978-3-642-12780-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics