Skip to main content

Epidemiology

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Hodgkin lymphoma (HL) is a relatively rare malignancy, occurring in the United States (US) at approximately 1/20th the rate of lung cancer, and 1/7th the rate of non-Hodgkin lymphoma in 2006 [1]. Yet, it has inspired a high degree of scientific interest because of the heterogeneity of its clinical presentation and behavior, with some aspects characteristic of malignancy but others recalling an infectious process; the complexity of its histology, including the infrequent malignant Hodgkin Reed–Sternberg (HRS) cell in an otherwise normal reactive infiltrate, and the variability of cell surface markers [2]; and its unusual occurrence in children and young adults, in whom it is one of the most common cancers [1], as well as in older persons. Motivated by these characteristics and MacMahon’s seminal papers on the epidemiology of HL in 1957 and 1966 [3, 4], epidemiologists have worked to disentangle the complexity of this disease so as to arrive at a clear understanding of its pathogenesis and etiology. However, even as findings from this research have helped elucidate some aspects of HL etiology, they have continued to reveal significant epidemiologic heterogeneity across patient groups that recalls the disease’s clinical and pathologic complexity. This heterogeneity complicates the interpretation of epidemiologic research conducted for HL as a single entity and perhaps challenges the classification of what is currently categorized as HL. Indeed, in 1999, HL was split into two main groups – classical HL, which comprises the majority of the subtypes, and lymphocyte-predominant HL, an uncommon disease considered a B-cell lymphoma despite HRS cell presence [5]. Regardless, the central feature of classical HL epidemiology is the very consistent observation of heterogeneity in its occurrence and risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CI:

Confidence interval

COX:

Cyclooxygenase

EA:

Early antigen

EBNA:

Epstein–Barr nuclear antigen

EBV:

Epstein–Barr virus

HL:

Hodgkin lymphoma

HLA:

Human leukocyte antigen

HRS:

Hodgkin Reed–Sternberg

IL:

Interleukin

IM:

Infectious mononucleosis

OR:

Odds ratio

RR:

Relative risk

SEER:

Surveillance, Epidemiology, and End Results

SES:

Socioeconomic status

US:

United States

UVR:

Ultraviolet radiation

VCA:

Viral capsid antigen

References

  1. Homer MJ, Ries LAG, Krapcho M, et al., editors. SEER Cancer Statistics Review, 1975-2006. Bethesda, MD: National Cancer Institute; 2009.

    Google Scholar 

  2. Mani H, Jaffe ES. Hodgkin lymphoma: An update on its biology with new insights into classification. Clin Lymph Res. 2009;9:206–16.

    Article  Google Scholar 

  3. MacMahon B. Epidemiological evidence on the nature of Hodgkin’s disease. Cancer. 1957;10:1045–54.

    Article  PubMed  CAS  Google Scholar 

  4. MacMahon B. Epidemiology of Hodgkin’s disease. Cancer Res. 1966;26(6):1189–201.

    PubMed  CAS  Google Scholar 

  5. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997 [see comments]. J Clin Oncol. 1999;17(12):3835–49.

    PubMed  CAS  Google Scholar 

  6. Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2002: Cancer incidence, mortality and prevalence worldwide. In: IARC CancerBase No 5 version 20. Lyon: IARC Press; 2004.

    Google Scholar 

  7. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence – SEER 17 Regs Limited-Use + Hurricane Katrina Impacted Louisiana Cases, Nov 2008 Sub (2000-2006) <Katrina/Rita Population Adjustment> – Linked To County Attributes - Total U.S., 1969–2006 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2009, based on the November 2008 submission.

  8. Reed DM. On the pathological changes in Hodgkin’s disease, with especial reference to its relation to tuberculosis. Johns Hopkins Hosp Rep. 1902;10:133–396.

    Google Scholar 

  9. Correa P, O’Conor GT. Epidemiologic patterns of Hodgkin’s disease. Int J Cancer. 1971;8(2):192–201.

    Article  PubMed  CAS  Google Scholar 

  10. Macfarlane G, Evstifeeva T, Boyle P, et al. International patterns in the occurrence of Hodgkin’s disease in children and young adult males. Int J Cancer. 1995;61(2):165–9.

    Article  PubMed  CAS  Google Scholar 

  11. Hjalgrim H, Seow A, Rostgaard K, et al. Changing patterns of Hodgkin lymphoma incidence in Singapore. Int J Cancer. 2008;123(3):716–9.

    Article  PubMed  CAS  Google Scholar 

  12. Glaser SL, Hsu JL. Hodgkin’s disease in Asians: incidence patterns and risk factors in population-based data. Leuk Res. 2002;26:261–9.

    Article  PubMed  Google Scholar 

  13. Au WY, Gascoyne RD, Gallagher RE, et al. Hodgkin’s lymphoma in Chinese migrants to British Columbia: a 25-year survey. Ann Oncol. 2004;15(4):626–30.

    Article  PubMed  CAS  Google Scholar 

  14. Caporaso NE, Goldin LR, Anderson WF, et al. Current insight on trends, causes, and mechanisms of Hodgkin’s lymphoma. Cancer J. 2009;15:117–23.

    Article  PubMed  Google Scholar 

  15. Clarke CA, Glaser SL, Keegan THM, et al. Neighborhood socioeconomic status and Hodgkin lymphoma incidence in California. Cancer Epidemiol Biomark Prev. 2005;14:1441–7.

    Article  Google Scholar 

  16. Chen YT, Zheng T, Mei-Chu C, et al. The increase in Hodgkin’s disease incidence among young adults. Experience in Connecticut, 1935–1992. Cancer. 1997;79:2209–18.

    Article  PubMed  CAS  Google Scholar 

  17. Gutensohn N, Cole P. Epidemiology of Hodgkin’s disease in the young. Int J Cancer. 1977;19(5):595–604.

    Article  PubMed  CAS  Google Scholar 

  18. Cozen W, Katz J, Mack TM. Risk patterns of Hodgkin’s disease in Los Angeles vary by cell type. Cancer Epidemiol Biomark Prev. 1992;1(4):261–8.

    CAS  Google Scholar 

  19. Glaser SL. Regional variation in Hodgkin’s disease incidence by histologic subtype in the US. Cancer. 1987;60:2841–7.

    Article  PubMed  CAS  Google Scholar 

  20. Grufferman S, Delzell E. Epidemiology of Hodgkin’s disease. Epidemiol Rev. 1984;6:76–106.

    PubMed  CAS  Google Scholar 

  21. Abramson JH, Pridan H, Sacks MI, et al. A case-control study of Hodgkin’s disease in Israel. J Natl Cancer Inst. 1978;61:307–14.

    PubMed  CAS  Google Scholar 

  22. Bernard SM, Cartwright RA, Darwin CM, et al. Hodgkin’s disease: case control epidemiological study in Yorkshire. Br J Cancer. 1987;55(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  23. Cohen BM, Smetana HF, Miller RW. Hodgkin’s disease: Long survival in a study of 388 World War II army cases. Cancer. 1964;17:856–66.

    Article  PubMed  CAS  Google Scholar 

  24. Glaser SL, Clarke CA, Nugent RA, et al. Social class and risk of Hodgkin’s disease in young-adult women in 1988-94. Int J Cancer. 2002;98:110–7.

    Article  PubMed  CAS  Google Scholar 

  25. Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. New Engl J Med. 1981;304:135–40.

    Article  PubMed  CAS  Google Scholar 

  26. Serraino D, Franceschi S, Talamini R, et al. Socio-economic indicators, infectious diseases and Hodgkin’s disease. Int J Cancer. 1991;47:352–7.

    Article  PubMed  CAS  Google Scholar 

  27. Alexander FE, Ricketts TJ, McKinney PA, et al. Community lifestyle characteristics and incidence of Hodgkin’s disease in young people. Int J Cancer. 1991;48(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  28. Bonelli L, Vitale V, Bistolfi F, et al. Hodgkin’s disease in adults: association with social factors and age at tonsillectomy. A case-control study. Int J Cancer. 1990;45(3):423–7.

    Article  PubMed  CAS  Google Scholar 

  29. Chang ET, Montgomery SM, Richiardi L, et al. Number of siblings and risk of Hodgkin’s lymphoma. Cancer Epidemiol Biomark Prev. 2004;13(7):1236–43.

    Google Scholar 

  30. Chang ET, Zheng T, Weir EG, et al. Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case-control study. Cancer Epidemiol Biomark Prev. 2004;13(8):1361–70.

    Google Scholar 

  31. Westergaard T, Melbye M, Pedersen JB, et al. Birth order, sibship size and risk of Hodgkin’s disease in children and young adults: a population-based study of 31 million person-years. Int J Cancer. 1997;72:977–81.

    Article  PubMed  CAS  Google Scholar 

  32. Carter CD, Brown Jr TM, Herbert JT, et al. Cancer incidence following infectious mononucleosis. Am J Epidemiol. 1977;105(1):30–6.

    PubMed  CAS  Google Scholar 

  33. Connelly RR, Christine BW. A cohort study of cancer following infectious mononucleosis. Cancer Res. 1974;34(5):1172–8.

    PubMed  CAS  Google Scholar 

  34. Hjalgrim H, Askling J, Sorensen P, et al. Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J Natl Cancer Inst. 2000;92(18):1522–8.

    Article  PubMed  CAS  Google Scholar 

  35. Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324–32.

    Article  PubMed  CAS  Google Scholar 

  36. Hjalgrim H, Smedby KE, Rostgaard K, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67:2382–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kvåle G, Høiby EA, Pedersen E. Hodgkin’s disease in patients with previous infectious mononucleosis. Int J Cancer. 1979;23:593–7.

    Article  PubMed  Google Scholar 

  38. Miller RW, Beebe GW. Infectious mononucleosis and the empirical risk of cancer. J Natl Cancer Inst. 1973;50:315–21.

    PubMed  CAS  Google Scholar 

  39. Rosdahl N, Larsen SO, Thamdrup AB. Infectious mononucleosis in Denmark. Epidemiological observations based on positive Paul-Bunnell reactions from 1940-1969. Scand J Infect Dis. 1973;5(3):163–70.

    PubMed  CAS  Google Scholar 

  40. Gutensohn NM. Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the “two-disease hypothesis”. Cancer Treat Rep. 1982;66(4):689–95.

    PubMed  CAS  Google Scholar 

  41. Gutensohn NM, Shapiro DS. Social class risk factors among children with Hodgkin’s disease. Int J Cancer. 1982;30(4):433–5.

    Article  PubMed  CAS  Google Scholar 

  42. Glaser SL, Clarke CA, Stearns CB, et al. Age variation in Hodgkin’s disease risk factors in older women: evidence from a population-based case-control study. Leuk Lymphoma. 2001;42:997–1004.

    Article  PubMed  CAS  Google Scholar 

  43. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr virus and Kaposi’s sarcoma herpesvirus/human herpesvirus8, vol. 7. Lyon: International Agency for Research on Cancer; 1997.

    Google Scholar 

  44. Evans AS, Gutensohn NM. A population-based case-control study of EBV and other viral antibodies among persons with Hodgkin’s disease and their siblings. Int J Cancer. 1984;34:149–57.

    Article  PubMed  CAS  Google Scholar 

  45. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95.

    Article  PubMed  CAS  Google Scholar 

  46. Weiss LM, Movahed LA, Warnke RA, et al. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320:502–6.

    Article  PubMed  CAS  Google Scholar 

  47. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.

    Article  PubMed  CAS  Google Scholar 

  48. Jarrett RF. Risk factors for Hodgkin’s lymphoma by EBV status and significance of detection of EBV genomes in serum of patients with EBV-associated Hodgkin’s lymphoma. Leuk Lymphoma. 2003;44 Suppl 3:S27–32.

    Article  PubMed  CAS  Google Scholar 

  49. Glaser SL, Gulley ML, Clarke CA, et al. Racial/ethnic variation in EBV-positive classical Hodgkin lymphoma in California populations. Int J Cancer. 2008;123:1499–507.

    Article  PubMed  CAS  Google Scholar 

  50. Jarrett RF, Krajewski AS, Angus B, et al. The Scotland and Newcastle epidemiological study of Hodgkin’s disease: impact of histopathological review and EBV status on incidence estimates. J Clin Pathol. 2003;56:811–6.

    Article  PubMed  CAS  Google Scholar 

  51. Alexander FE, Lawrence DJ, Freeland J, et al. An epidemiologic study of index and family infectious mononucleosis and adult Hodgkin’s disease (HD): evidence for a specific association with EBV+ve HD in young adults. Int J Cancer. 2003;107(2):298–302.

    Article  PubMed  CAS  Google Scholar 

  52. Cozen W, Hamilton AS, Zhao P, et al. A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood. 2009;114(19):4014–20.

    Article  PubMed  CAS  Google Scholar 

  53. Glaser SL, Keegan THM, Clarke CA, et al. Exposure to childhood infections and risk of EBV-defined Hodgkin’s lymphoma in women. Int J Cancer. 2005;115:599–605.

    Article  PubMed  CAS  Google Scholar 

  54. Montella M, Maso LD, Crispo A, et al. Do childhood diseases affect NHL and HL risk? A case-control study from northern and southern Italy. Leuk Res. 2006;30(8):917–22.

    Article  PubMed  Google Scholar 

  55. Newton R, Crouch S, Ansell P, et al. Hodgkin’s lymphoma and infection: findings from a UK case-control study. Br J Cancer. 2007;97(9):1310–4.

    Article  PubMed  CAS  Google Scholar 

  56. Sleckman BG, Mauch PM, Ambinder RF, et al. Epstein-Barr virus in Hodgkin’s disease: correlation of risk factors and disease characteristics with molecular evidence of viral infection. Cancer Epidemiol Biomark Prev. 1998;7:1117–21.

    CAS  Google Scholar 

  57. Chang ET, Zheng T, Lennette ET, et al. Heterogeneity of risk factors and antibody profiles in Epstein-barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis. 2004;189:2271–81.

    Article  PubMed  Google Scholar 

  58. Jarrett RF. Viruses and Hodgkin’s lymphoma. Ann Oncol. 2002;13 Suppl 1:23–9.

    Article  PubMed  Google Scholar 

  59. Hors J, Steinberg G, Andrieu JM, et al. HLA genotypes in familial Hodgkin’s disease. Excess of HLA identical affected sibs. Eur J Cancer. 1980;16(6):809–15.

    PubMed  CAS  Google Scholar 

  60. Lin AY, Kingma DW, Lennette ET, et al. Epstein-Barr virus and familial Hodgkin’s disease. Blood. 1996;88(8):3160–5.

    PubMed  CAS  Google Scholar 

  61. Bjerrum OW, Hasselbalch HC, Drivsholm A, et al. Non-Hodgkin malignant lymphomas and Hodgkin’s disease in first-degree relatives. Evidence for a mutual genetic predisposition? Scand J Haematol. 1986;36(4):398–401.

    Article  PubMed  CAS  Google Scholar 

  62. Donhuijsen-Ant R, Abken H, Bornkamm G, et al. Fatal Hodgkin and non-Hodgkin lymphoma associated with persistent Epstein-Barr virus in four brothers. Ann Intern Med. 1988;109(12):946–52.

    PubMed  CAS  Google Scholar 

  63. Goldin LR, Pfeiffer RM, Gridley G, et al. Familial aggregation of Hodgkin lymphoma and related tumors. Cancer. 2004;100:1902–8.

    Article  PubMed  Google Scholar 

  64. Lynch HT, Marcus JN, Weisenburger DD, et al. Genetic and immunopathological findings in a lymphoma family. Br J Cancer. 1989;59(4):622–6.

    Article  PubMed  CAS  Google Scholar 

  65. Padua L, Palmisani MT, Di Trapani G, et al. Myasthenia gravis and thymic Hodgkin’s disease associated in one patient with familial lymphoproliferative disorders. Clin Neuropathol. 1994;13(5):292–4.

    PubMed  CAS  Google Scholar 

  66. Razis DV, Diamond HD, Craver LF. Familial Hodgkin’s disease: its significance and implications. Ann Intern Med. 1959;51(5):933–71.

    PubMed  CAS  Google Scholar 

  67. Buehler SK, Firme F, Fodor G, et al. Common variable immunodeficiency, Hodgkin’s disease, and other malignancies in a Newfoundland family. Lancet. 1975;1(7900):195–7.

    Article  PubMed  CAS  Google Scholar 

  68. Grufferman S, Ambinder RF, Shugart YY, et al. Increased cancer risk in families of children with Hodgkin’s disease. Am J Epidemiol. 1998;147(11):S8.

    Google Scholar 

  69. Lynch HT, Marcus JN, Lynch JF. Genetics of Hodgkin’s and non-Hodgkin’s lymphoma: a review. Cancer Invest. 1992;10(3):247–56.

    Article  PubMed  CAS  Google Scholar 

  70. McKeen EA, Mulvihill JJ, Levine PH, et al. The concurrence of Saethre-Chotzen syndrome and malignancy in a family with in vitro immune dysfunction. Cancer. 1984;54(12):2946–51.

    Article  PubMed  CAS  Google Scholar 

  71. Chakravarti A, Halloran SL, Bale SJ, et al. Etiological heterogeneity in Hodgkin’s disease: HLA linked and unlinked determinants of susceptibility independent of histological concordance. Genet Epidemiol. 1986;3(6):407–15.

    Article  PubMed  CAS  Google Scholar 

  72. Haim N, Cohen Y, Robinson E. Malignant lymphoma in first-degree blood relatives. Cancer. 1982;49(10):2197–200.

    Article  PubMed  CAS  Google Scholar 

  73. Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332:413–8.

    Article  PubMed  CAS  Google Scholar 

  74. Brown JR, Neuberg D, Phillips K, et al. Prevalence of familial malignancy in a prospectively screened cohort of patients with lymphoproliferative disorders. Br J Haematol. 2008;143(3):361–8.

    Article  PubMed  Google Scholar 

  75. Chang ET, Smedby KE, Hjalgrim H, et al. Family history of hematopoietic malignancy and risk of lymphoma. J Natl Cancer Inst. 2005;97(19):1466–74.

    Article  PubMed  Google Scholar 

  76. Friedman DL, Kadan-Lottick NS, Whitton J, et al. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the Childhood Cancer Survivor Study. Cancer Epidemiol Biomark Prev. 2005;14(8):1922–7.

    Article  Google Scholar 

  77. Goldgar DE, Easton DF, Cannon-Albright LA, et al. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–8.

    Article  PubMed  CAS  Google Scholar 

  78. Grufferman S, Cole P, Smith PG, et al. Hodgkin’s disease in siblings. N Engl J Med. 1977;296(5):248–50.

    Article  PubMed  CAS  Google Scholar 

  79. Hemminki K, Czene K. Attributable risks of familial cancer from the Family-Cancer Database. Cancer Epidemiol Biomark Prev. 2002;11:1638–44.

    Google Scholar 

  80. Kerzin-Storrar L, Faed MJ, MacGillivray JB, et al. Incidence of familial Hodgkin’s disease. Br J Cancer. 1983;47(5):707–12.

    Article  PubMed  CAS  Google Scholar 

  81. McDuffie H, Pahwa P, Karunanayake C, et al. Clustering of cancer among families of cases with Hodgkin Lymphoma (HL), Multiple Myeloma (MM), Non-Hodgkin’s Lymphoma (NHL), Soft Tissue Sarcoma (STS) and control subjects. BMC Cancer. 2009;9(1):70.

    Article  PubMed  Google Scholar 

  82. Pang D, Alston RD, Eden TOB, et al. Cancer risks among relatives of children with Hodgkin and non-Hodgkin lymphoma. Int J Cancer. 2008;123(6):1407–10.

    Article  PubMed  CAS  Google Scholar 

  83. Rudant J, Menegaux F, Leverger G, et al. Family history of cancer in children with acute leukemia, Hodgkin’s lymphoma or non-Hodgkin’s lymphoma: the ESCALE study (SFCE). Int J Cancer. 2007;121(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  84. Casey R, Brennan P, Becker N, et al. Influence of familial cancer history on lymphoid neoplasms risk validated in the large European case-control study epilymph. Eur J Cancer. 2006;42(15):2570–6.

    Article  PubMed  Google Scholar 

  85. Chatterjee N, Hartge P, Cerhan JR, et al. Risk of non-Hodgkin’s lymphoma and family history of lymphatic, hematologic, and other cancers. Cancer Epidemiol Biomark Prev. 2004;13(9):1415–21.

    Google Scholar 

  86. Wang SS, Slager SL, Brennan P, et al. Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). Blood. 2007;109(8):3479–88.

    Article  PubMed  CAS  Google Scholar 

  87. Altieri A, Hemminki K. The familial risk of Hodgkin’s lymphoma ranks among the highest in the Swedish Family-Cancer Database. Leukemia. 2006;20(11):2062–3.

    Article  PubMed  CAS  Google Scholar 

  88. Paltiel O, Schmit T, Adler B, et al. The incidence of lymphoma in first-degree relatives of patients with Hodgkin disease and non-Hodgkin lymphoma: results and limitations of a registry-linked study. Cancer. 2000;88(10):2357–66.

    Article  PubMed  CAS  Google Scholar 

  89. Shugart YY, Hemminki K, Vaittinen P, et al. Apparent anticipation and heterogeneous transmission patterns in familial Hodgkin’s and non-Hodgkin’s lymphoma: report from a study based on Swedish cancer database. Leuk Lymphoma. 2001;42:407–15.

    Article  PubMed  CAS  Google Scholar 

  90. Daugherty SE, Pfeiffer RM, Mellemkjaer L, et al. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol Biomark Prev. 2005;14(5):1245–50.

    Article  Google Scholar 

  91. Goldin LR, Björkholm M, Kristinsson SY, et al. Highly increased familial risks for specific lymphoma subtypes. Br J Haematol. 2009;146(1):91–4.

    Article  PubMed  Google Scholar 

  92. Hemminki K, Li X. Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br J Cancer. 2004;90(9):1765–70.

    Article  PubMed  CAS  Google Scholar 

  93. Hjalgrim H, Rasmussen S, Rostgaard K, et al. Familial clustering of Hodgkin lymphoma and multiple sclerosis. J Natl Cancer Inst. 2004;96(10):780–4.

    Article  PubMed  Google Scholar 

  94. Landgren O, Kerstann KF, Gridley G, et al. Re: Familial clustering of Hodgkin lymphoma and multiple sclerosis. J Natl Cancer Inst. 2005;97(7):543–4.

    Article  PubMed  Google Scholar 

  95. Goldin LR, McMaster ML, Ter-Minassian M, et al. A genome screen of families at high risk for Hodgkin lymphoma: evidence for a susceptibility gene on chromosome 4. J Med Genet. 2005;42:595–601.

    Article  PubMed  CAS  Google Scholar 

  96. Hemminki K, Li X, Czene K. Familial risk of cancer: data for clinical counseling and cancer genetics. Int J Cancer. 2004;108:109–14.

    Article  PubMed  CAS  Google Scholar 

  97. Hemminki K, Li X. Cancer risks in twins: results from the Swedish family-cancer database. Int J Cancer. 2002;99(6):873–8.

    Article  PubMed  CAS  Google Scholar 

  98. Swerdlow AJ, De Stavola B, Maconochie N, et al. A population-based study of cancer risk in twins: relationships to birth order and sexes of the twin pair. Int J Cancer. 1996;67(4):472–8.

    Article  PubMed  CAS  Google Scholar 

  99. Horwitz M, Wiernik PH. Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet. 1999;65(5):1413–22.

    Article  PubMed  CAS  Google Scholar 

  100. Horwitz MS, Mealiffe ME. Further evidence for a pseudoautosomal gene for Hodgkin’s lymphoma: Reply to “The familial risk of Hodgkin’s lymphoma ranks among the highest in the Swedish Family-Cancer Database” by Altieri A and Hemminki K. Leukemia. 2006;21(2):351.

    Article  PubMed  CAS  Google Scholar 

  101. Kamper PM, Kjeldsen E, Clausen N, et al. Epstein-Barr virus-associated familial Hodgkin lymphoma: paediatric onset in three of five siblings. Br J Haematol. 2005;129(5):615–7.

    Article  PubMed  Google Scholar 

  102. Mueller NE, Grufferman S. Hodgkin lymphoma. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. 3rd ed. New York: Oxford University Press; 2006. p. 872–97.

    Chapter  Google Scholar 

  103. Rowlings PA, Curtis RE, Passweg JR, et al. Increased incidence of Hodgkin’s disease after allogeneic bone marrow transplantation. J Clin Oncol. 1999;17(10):3122–7.

    PubMed  CAS  Google Scholar 

  104. Frisch M, Biggar RJ, Engels EA, et al. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285(13):1736–45.

    Article  PubMed  CAS  Google Scholar 

  105. Berenguer J, Miralles P, Ribera JM, et al. Characteristics and outcome of AIDS-related Hodgkin lymphoma before and after the introduction of highly active antiretroviral therapy. JAIDS. 2008;47(4):422–8.

    Article  PubMed  CAS  Google Scholar 

  106. Biggar RJ, Jaffe ES, Goedert JJ, et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108(12):3786–91.

    Article  PubMed  CAS  Google Scholar 

  107. Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54.

    Article  PubMed  Google Scholar 

  108. Baker KS, DeFor TE, Burns LJ, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8.

    Article  PubMed  Google Scholar 

  109. Smedby KE, Baecklund E, Askling J. Malignant lymphomas in autoimmunity and inflammation: a review of risks, risk factors, and lymphoma characteristics. Cancer Epidemiol Biomark Prev. 2006;15:2069–77.

    Article  CAS  Google Scholar 

  110. Kristinsson SY, Landgren O, Sjoberg J, et al. Autoimmunity and risk for Hodgkin’s lymphoma by subtype. Haematologica. 2009;94(10):1468–9.

    Article  PubMed  Google Scholar 

  111. Anderson LA, Gadalla S, Morton LM, et al. Population-based study of autoimmune conditions and the risk of specific lymphoid malignancies. Int J Cancer. 2009;125:398–405.

    Article  PubMed  CAS  Google Scholar 

  112. Eguchi K. Apoptosis in autoimmune diseases. Intern Med. 2001;40:275–84.

    Article  PubMed  CAS  Google Scholar 

  113. Cozen W, Gill PS, Salam MT, et al. Interleukin-2, interleukin-12, and interferon-{gamma} levels and risk of young adult Hodgkin lymphoma. Blood. 2008;111(7):3377–82.

    Article  PubMed  CAS  Google Scholar 

  114. Biggar RJ, Johansen JS, Ekström Smedby K, et al. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma. Clin Cancer Res. 2008;14(21):6974–8.

    Article  PubMed  CAS  Google Scholar 

  115. Cozen W, Gill PS, Ingles SA, et al. IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood. 2004;103(8):3216–21.

    Article  PubMed  CAS  Google Scholar 

  116. Gause A, Scholz R, Klein S, et al. Increased levels of circulating interleukin-6 in patients with Hodgkin’s disease. Hematol Oncol. 1991;9(6):307–13.

    Article  PubMed  CAS  Google Scholar 

  117. Gause A, Keymis S, Scholz R, et al. Increased levels of circulating cytokines in patients with untreated Hodgkin’s disease. Lymphokine Cytokine Res. 1992;11(2):109–13.

    PubMed  CAS  Google Scholar 

  118. Herling M, Rassidakis GZ, Medeiros LJ, et al. Expression of Epstein-Barr virus latent membrane protein-1 in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma: associations with presenting features, serum interleukin 10 levels, and clinical outcome. Clin Cancer Res. 2003;9(6):2114–20.

    PubMed  CAS  Google Scholar 

  119. Hohaus S, Giachelia M, Massini G, et al. Clinical significance of interleukin-10 gene polymorphisms and plasma levels in Hodgkin lymphoma. Leuk Res. 2009;33(10):1352–6.

    Article  PubMed  CAS  Google Scholar 

  120. Niens M, Visser L, Nolte IM, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140(5):527–36.

    Article  PubMed  CAS  Google Scholar 

  121. Chang ET, Zheng T, Weir EG, et al. Aspirin and the risk of Hodgkin’s lymphoma in a population-based case-control study. J Natl Cancer Inst. 2004;96:305–15.

    Article  PubMed  CAS  Google Scholar 

  122. Chang ET, Cronin-Fenton DP, Friis S, et al. Aspirin and other nonsteroidal anti-inflammatory drugs in relation to Hodgkin lymphoma risk in northern Denmark. Cancer Epidemiol Biomark Prev. 2010;19:59–64.

    Article  CAS  Google Scholar 

  123. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996;87(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  124. Yamamoto Y, Yin MJ, Lin KM, et al. Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem. 1999;274(38):27307–14.

    Article  PubMed  CAS  Google Scholar 

  125. Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood. 1996;87(10):4340–7.

    PubMed  CAS  Google Scholar 

  126. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100(12):2961–9.

    Article  PubMed  CAS  Google Scholar 

  127. Hinz M, Loser P, Mathas S, et al. Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood. 2001;97(9):2798–807.

    Article  PubMed  CAS  Google Scholar 

  128. Izban KF, Ergin M, Huang Q, et al. Characterization of NF-kappaB expression in Hodgkin’s disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod Pathol. 2001;14(4):297–310.

    Article  PubMed  CAS  Google Scholar 

  129. Van Der Ouderaa FJ, Buytenhek M, Nugteren DH, et al. Acetylation of prostaglandin endoperoxide synthetase with acetylsalicylic acid. Eur J Biochem. 1980;109(1):1–8.

    Article  Google Scholar 

  130. Goodwin JS, Messner RP, Bankhurst AD, et al. Prostaglandin-producing suppressor cells in Hodgkin’s disease. N Engl J Med. 1977;297(18):963–8.

    Article  PubMed  CAS  Google Scholar 

  131. Hsu SM, Hsu PL, Lo SS, et al. Expression of prostaglandin H synthase (cyclooxygenase) in Hodgkin’s mononuclear and Reed-Sternberg cells. Functional resemblance between H-RS cells and histiocytes or interdigitating reticulum cells. Am J Pathol. 1988;133(1):5–12.

    PubMed  CAS  Google Scholar 

  132. Diepstra A, Niens M, te Meerman GJ, et al. Genetic susceptibility to Hodgkin’s lymphoma associated with the human leukocyte antigen region. Eur J Haematol Suppl. 2005;75(66):34–41.

    Article  Google Scholar 

  133. Berberich FR, Berberich MS, King MC, et al. Hodgkin’s disease susceptibility: linkage to the HLA locus demonstrated by a new concordance method. Hum Immunol. 1983;6:207–17.

    Article  PubMed  CAS  Google Scholar 

  134. Harty LC, Lin AY, Goldstein AM, et al. HLA-DR, HLA-DQ, and TAP genes in familial Hodgkin disease. Blood. 2002;99:690–3.

    Article  PubMed  CAS  Google Scholar 

  135. Lynch HT, Saldivar VA, Guirgis HA, et al. Familial Hodgkin’s disease and associated cancer. Cancer. 1976;38:2033–41.

    Article  PubMed  CAS  Google Scholar 

  136. Hors J, Dausset J. HLA and susceptibility to Hodgkin’s disease. Immunol Rev. 1983;70:167–92.

    Article  PubMed  CAS  Google Scholar 

  137. Paltiel O. Family matters in Hodgkin lymphoma. Leuk Lymph. 2008;49(7):1234–5.

    Article  Google Scholar 

  138. Shugart YY, Hemminki K, Vaittinen P, et al. A genetic study of Hodgkin’s lymphoma: an estimate of heritability and anticipation based on the familial cancer database in Sweden. Hum Genet. 2000;106:553–6.

    Article  PubMed  CAS  Google Scholar 

  139. Ahmad T, Neville M, Marshall SE, et al. Haplotype-specific linkage disequilibrium patterns define the genetic topography of the human MHC. Hum Mol Genet. 2003;12(6):647–56.

    Article  PubMed  CAS  Google Scholar 

  140. Liang X, Caporaso N, McMaster ML, et al. Common genetic variants in candidate genes and risk of familial lymphoid malignancies. Br J Haematol. 2009;146(4):418–23.

    Article  PubMed  CAS  Google Scholar 

  141. da Silva GN, Bacchi MM, Rainho CA, et al. Epstein-Barr virus infection and single nucleotide polymorphisms in the promoter region of interleukin 10 gene in patients with Hodgkin lymphoma. Arch Pathol Lab Med. 2007;131:1691–6.

    PubMed  Google Scholar 

  142. Chang ET, Birmann BM, Kasperzyk JL, et al. Polymorphic variation in NFKB1 and other aspirin-related genes and risk of Hodgkin lymphoma. Cancer Epidemiol Biomark Prev. 2009;18(3):976–86.

    Article  CAS  Google Scholar 

  143. Baecklund E, Iliadou A, Askling J, et al. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006;54:692–701.

    Article  PubMed  Google Scholar 

  144. Bodmer JG, Tonks S, Oza AM, et al. HLA-DP based resistance to Hodgkin’s disease. Lancet. 1989;333(8652):1455–6.

    Article  Google Scholar 

  145. Oza AM, Tonks S, Lim J, et al. A clinical and epidemiological study of human leukocyte antigen-DPB alleles in Hodgkin’s disease. Cancer Res. 1994;54(19):5101–5.

    PubMed  CAS  Google Scholar 

  146. Taylor GM, Gokhale DA, Crowther D, et al. Increased frequency of HLA-DPB1*0301 in Hodgkin’s disease suggests that susceptibility is HVR-sequence and subtype-associated. Leukemia. 1996;10:854–9.

    PubMed  CAS  Google Scholar 

  147. Taylor GM, Gokhale DA, Crowther D, et al. Further investigation of the role of HLA-DPB1 in adult Hodgkin’s disease (HD) suggests an influence on susceptibility to different HD subtypes. Br J Cancer. 1999;80:1405–11.

    Article  PubMed  CAS  Google Scholar 

  148. Klitz W, Aldrich CL, Fildes N, et al. Localization of predisposition to Hodgkin disease in the HLA class II region. Am J Hum Genet. 1994;54(3):497–505.

    PubMed  CAS  Google Scholar 

  149. Alexander FE, Jarrett RF, Cartwright RA, et al. Epstein-Barr Virus and HLA-DPB1-*0301 in young adult Hodgkin’s disease: evidence for inherited susceptibility to Epstein-Barr Virus in cases that are EBV(+ve). Cancer Epidemiol Biomark Prev. 2001;10:705–9.

    CAS  Google Scholar 

  150. Diepstra A, Niens M, Vellenga E, et al. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet. 2005;365:2216–24.

    Article  PubMed  CAS  Google Scholar 

  151. Niens M, van den Berg A, Diepstra A, et al. The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol Biomark Prev. 2006;15:2280–4.

    Article  CAS  Google Scholar 

  152. Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV-positive Hodgkin lymphoma. Blood. 2007;110:3310–5.

    Article  PubMed  CAS  Google Scholar 

  153. McAulay KA, Higgins CD, Macsween KF, et al. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest. 2007;117:3042–8.

    Article  PubMed  CAS  Google Scholar 

  154. Briggs NC, Hall HI, Brann EA, et al. Cigarette smoking and risk of Hodgkin’s disease: a population-based case-control study. Am J Epidemiol. 2002;156:1011–20.

    Article  PubMed  Google Scholar 

  155. Besson H, Brennan P, Becker N, et al. Tobacco smoking, alcohol drinking and Hodgkin’s lymphoma: a European multi-centre case-control study (EPILYMPH). Br J Cancer. 2006;95(3):378–84.

    Article  PubMed  CAS  Google Scholar 

  156. Glaser SL, Keegan TH, Clarke CA, et al. Smoking and Hodgkin lymphoma risk in women United States. Cancer Causes Control. 2004;15(4):387–97.

    Article  PubMed  Google Scholar 

  157. Hjalgrim H, Ekström-Smedby K, Rostgaard K, et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case-control study. Cancer Epidemiol Biomark Prev. 2007;16:1561–6.

    Article  CAS  Google Scholar 

  158. Klatsky AL, Li Y, Baer D, et al. Alcohol consumption and risk of hematologic malignancies. Ann Epidemiol. 2009;19(10):746–53.

    Article  PubMed  Google Scholar 

  159. Lim U, Morton LM, Subar AF, et al. Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol. 2007;166(6):697–708.

    Article  PubMed  Google Scholar 

  160. Nieters A, Deeg B, Becker N. Tobacco and alcohol consumption and risk of lymphoma: results of a population-based case-control study in Germany. Int J Cancer. 2006;118(2):422–30.

    Article  PubMed  CAS  Google Scholar 

  161. Nieters A, Rohrmann S, Becker N, et al. Smoking and lymphoma risk in the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol. 2008;167(9):1081–9.

    Article  PubMed  Google Scholar 

  162. Willett EV, O’Connor S, Smith AG, et al. Does smoking or alcohol modify the risk of Epstein-Barr Virus-positive or -negative Hodgkin lymphoma? Epidemiology. 2007;18(1):130–6.

    Article  PubMed  Google Scholar 

  163. Sopori ML, Kozak W. Immunomodulatory effects of cigarette smoke. J Neuroimmunol. 1998;83(1–2):148–56.

    Article  PubMed  CAS  Google Scholar 

  164. Gorini G, Stagnaro E, Fontana V, et al. Alcohol consumption and risk of Hodgkin’s lymphoma and multiple myeloma: a multicentre case-control study. Ann Oncol. 2007;18(1):143–8.

    Article  PubMed  CAS  Google Scholar 

  165. Kanda J, Matsuo K, Kawase T, et al. Association of alcohol intake and smoking with malignant lymphoma risk in Japanese: a hospital-based case-control study at Aichi Cancer Center. Cancer Epidemiol Biomark Prev. 2009;18(9):2436–41.

    Article  CAS  Google Scholar 

  166. Monnereau A, Orsi L, Troussard X, et al. Cigarette smoking, alcohol drinking, and risk of lymphoid neoplasms: results of a French case–control study. Cancer Causes Control. 2008;19(10):1147–60.

    Article  PubMed  CAS  Google Scholar 

  167. Tavani A, Pregnolato A, Negri E, et al. Diet and risk of lymphoid neoplasms and soft tissue sarcomas. Nutr Cancer. 1997;27(3):256–60.

    Article  PubMed  CAS  Google Scholar 

  168. Bobrove AM. Alcohol-related pain and Hodgkin’s disease. West J Med. 1983;138(6):874–5.

    PubMed  CAS  Google Scholar 

  169. Diaz LE, Montero A, Gonzalez-Gross M, et al. Influence of alcohol consumption on immunological status: a review. Eur J Clin Nutr. 2002;56 Suppl 3:S50–3.

    Article  PubMed  CAS  Google Scholar 

  170. Ekström Smedby K, Hjalgrim H, Melbye M, et al. Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl Cancer Inst. 2005;97(3):199–209.

    Article  Google Scholar 

  171. Grandin L, Orsi L, Troussard X, et al. UV radiation exposure, skin type and lymphoid malignancies: results of a French case-control study. Cancer Causes Control. 2008;19(3):305–15.

    Article  PubMed  CAS  Google Scholar 

  172. Boffetta P, van der Hel O, Kricker A, et al. Exposure to ultraviolet radiation and risk of malignant lymphoma and multiple myeloma – a multicentre European case-control study. Int J Epidemiol. 2008;37(5):1080–94.

    Article  PubMed  Google Scholar 

  173. Guyton KZ, Kensler TW, Posner GH. Vitamin D and vitamin D analogs as cancer chemopreventive agents. Nutr Rev. 2003;61(7):227–38.

    Article  PubMed  Google Scholar 

  174. Hickish T, Cunningham D, Colston K, et al. The effect of 1, 25-dihydroxyvitamin D3 on lymphoma cell lines and expression of vitamin D receptor in lymphoma. Br J Cancer. 1993;68(4):668–72.

    Article  PubMed  CAS  Google Scholar 

  175. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1, 25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634–47.

    PubMed  CAS  Google Scholar 

  176. Isager H, Andersen E. Pre-morbid factors in Hodgkin’s disease. I. Birth weight and growth pattern from 8 to 14 years of age. Scand J Haematol. 1978;21:250–5.

    Article  PubMed  CAS  Google Scholar 

  177. Hancock BW, Mosely R, Coup AJ. Height and Hodgkin’s disease (letter). Lancet. 1976;2:1364.

    Article  PubMed  CAS  Google Scholar 

  178. Keegan THM, Glaser SL, Clarke CA, et al. Body size, physical activity and risk of Hodgkin lymphoma in women. Cancer Epidemiol Biomark Prev. 2006;15:1095–101.

    Article  Google Scholar 

  179. La Vecchia C, Negri E, Parazzini F, et al. Height and cancer risk in a network of case-control studies from northern Italy. Int J Cancer. 1990;45(2):275–9.

    Article  PubMed  Google Scholar 

  180. Paffenbarger Jr RS, Wing AL, Hyde RT. Characteristics in youth indicative of adult-onset Hodgkin’s disease. J Natl Cancer Inst. 1977;58(5):1489–91.

    PubMed  Google Scholar 

  181. Willett EV, Roman E. Obesity and the risk of Hodgkin lymphoma (United Kingdom). Cancer Causes Control. 2006;17:1103–6.

    Article  PubMed  Google Scholar 

  182. Gunnell D, Okasha M, Smith GD, et al. Height, leg length, and cancer risk: a systematic review. Epidemiol Rev. 2001;23(2):313–42.

    Article  PubMed  CAS  Google Scholar 

  183. Silventoinen K. Determinants of variation in adult body height. J Biosoc Sci. 2003;35(2):263–85.

    Article  PubMed  Google Scholar 

  184. Mueller N. Hodgkin’s disease. In: Schottenfeld D, Fraumeni Jr JF, editors. Cancer epidemiology and prevention. 2nd ed. New York, NY: Oxford University Press; 1996. p. 893–919.

    Google Scholar 

  185. Mueller N, Grufferman S. The epidemiology of Hodgkin’s disease. In: Mauch PM, Armitage JO, Diehl V, et al., editors. Hodgkin’s disease. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 61–77.

    Google Scholar 

  186. Okasha M, Gunnell D, Holly J, et al. Childhood growth and adult cancer. Best Pract Res Clin Endocrinol Metab. 2002;16(2):225–41.

    Article  PubMed  Google Scholar 

  187. Wolk A, Gridley G, Svensson M, et al. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control. 2001;12(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  188. Bosetti C, Dal Maso L, Negri E, et al. Re: Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst. 2005;97(11):860–1.

    Article  PubMed  Google Scholar 

  189. Chang ET, Hjalgrim H, Smedby KE, et al. Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst. 2005;97(3):210–8.

    Article  PubMed  Google Scholar 

  190. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3(9):565–74.

    Article  PubMed  Google Scholar 

  191. Glaser SL. Reproductive factors in Hodgkin’s disease in women: a review. Am J Epidemiol. 1994;139:237–46.

    PubMed  CAS  Google Scholar 

  192. Kravdal O, Hansen S. Hodgkin’s disease: The protective effect of childbearing. Int J Cancer. 1993;55:909–14.

    Article  PubMed  CAS  Google Scholar 

  193. Kravdal O, Hansen S. The importance of childbearing for Hodgkin’s disease: new evidence from incidence and mortality models. Int J Epidemiol. 1996;25(4):737–43.

    Article  PubMed  CAS  Google Scholar 

  194. Lambe M, Hsieh CC, Tsaih S-W, et al. Childbearing and the risk of Hodgkin’s disease. Cancer Epidemiol Biomark Prev. 1998;7:831–4.

    CAS  Google Scholar 

  195. Tavani A, Pregnolato A, La Vecchia C, et al. A case-control study of reproductive factors and risk of lymphomas and myelomas. Leuk Res. 1997;21:885–8.

    Article  PubMed  CAS  Google Scholar 

  196. Zwitter M, Zakelj MP, Kosmelj K. A case-control study of Hodgkin’s disease and pregnancy. Br J Cancer. 1996;73:246–51.

    Article  PubMed  CAS  Google Scholar 

  197. Glaser SL, Clarke CA, Nugent RA, et al. Reproductive risk factors in Hodgkin’s disease in women. Am J Epidemiol. 2003;158:553–63.

    Article  PubMed  Google Scholar 

  198. Hjalgrim H, Engels EA. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Int Medicine. 2008;264(6):537–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kari Fish, Sarah Shema, and June Kristine Winters for help with this chapter. The collection of cancer incidence data used in this chapter was supported by the California Department of Health Services as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under contract N01-PC-35136 awarded to the Northern California Cancer Center (now the Cancer Prevention Institute of California), contract N01-PC-35139 awarded to the University of Southern California, and contract N02-PC-15105 awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement #U55/CCR921930-02 awarded to the Public Health Institute. The ideas and opinions expressed herein are those of the authors and endorsement by the State of California, Department of Health Services, the National Cancer Institute, and the Centers for Disease Control and Prevention or their contractors and subcontractors is not intended nor should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally L. Glaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaser, S.L., Chang, E.T., Clarke, C.A., Keegan, T.H. (2011). Epidemiology. In: Engert, A., Horning, S. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12780-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12780-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12779-3

  • Online ISBN: 978-3-642-12780-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics