Skip to main content

Application of Coarse-Coding Techniques for Evolvable Multirobot Controllers

  • Chapter
Computational Intelligence in Optimization

Abstract

Robots, in their most general embodiment, can be complex systems trying to negotiate and manipulate an unstructured environment. They ideally require an ‘intelligence’ that reflects our own. Artificial evolutionary algorithms are often used to generate a high-level controller for single and multi robot scenarios. But evolutionary algorithms, for all their advantages, can be very computationally intensive. It is therefore very desirable to minimize the number of generations required for a solution. In this chapter, we incorporate the Artificial Neural Tissue (ANT) approach for robot control from previous work with a novel Sensory Coarse Coding (SCC) model. This model is able to exploit regularity in the sensor data of the environment. Determining how the sensor suite of a robot should be configured and utilized is critical for the robot’s operation. Much as nature evolves body and brain simultaneously, we should expect improved performance resulting from artificially evolving the controller and sensor configuration in unison. Simulation results on an example task, resource gathering, show that the ANT+SCC system is capable of finding fitter solutions in fewer generations. We also report on hardware experiments for the same task that show complex behaviors emerging through self-organized task decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: Stigmergy and collective robots. In: Fourth International Workshop on the Syntheses and Simulation of Living Systems, pp. 181–189. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., Camazine, S.: Self-organization in social insects. Trends in Ecology and Evolution 12, 188–193 (1997)

    Article  Google Scholar 

  3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ. Press, New York (1999)

    MATH  Google Scholar 

  4. Bongard, J., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny. In: Proceedings of the Genetic and Evolutionary Computation Conference 2001, San Francisco, CA, pp. 829–836 (2001)

    Google Scholar 

  5. Chantemargue, F., Dagaeff, T., Schumacher, M., Hirsbrunner, B.: Implicit cooperation and antagonism in multi-agent systems, University of Fribourg, Technical Report (1996)

    Google Scholar 

  6. Chellapilla, K., Fogel, D.B.: Evolving an expert checkers playing program without using human expertise. IEEE Transactions on Evolutionary Computation 5(4), 422–428 (2001)

    Article  Google Scholar 

  7. Das, R., Crutchfield, J.P., Mitchell, M., Hanson, J.: Evolving globally synchronized cellular automata. In: Proceedings of the Sixth International Conference on Genetic Algorithms 1995, pp. 336–343. Morgan Kaufmann, San Fransisco (1995)

    Google Scholar 

  8. Dellaert, F., Beer, R.: Towards an evolvable model of development for autonomous agent synthesis. In: Artificial Life IV: Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems, pp. 246–257. MIT Press, Cambridge (1994)

    Google Scholar 

  9. Demeris, J., Matarić, M.J.: Perceptuo-Motor Primitives in Imitation. In: Autonomous Agents 1998 Workshop on Agents in Interaction Acquiring Competence (1998)

    Google Scholar 

  10. Federici, D., Downing, K.: Evolution and Development of a Multicellular Organism: Scalability, Resilience, and Neutral Complexification. Artificial Life 12, 381–409 (2006)

    Article  Google Scholar 

  11. Gauci, J., Stanley, K.: A Case Study on the Critical Role of Geometric Regularity in Machine Learning. In: Proceedings of the 23rd AAAI Conference on AI. AAAI Press, Menlo Park (2008)

    Google Scholar 

  12. Grassé, P.: La reconstruction du nid les coordinations interindividuelles; la theorie de stigmergie. Insectes Sociaux 35, 41–84 (1959)

    Article  Google Scholar 

  13. Groß, R., Dorigo, M.: Evolving a Cooperative Transport Behavior for Two Simple Robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004)

    Google Scholar 

  14. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: Genetic Programming 1996, pp. 81–89. MIT Press, Cambridge (1996)

    Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, R.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  16. Jacobs, R., Jordan, M., Barto, A.: Task decomposition through competition in a modular connectionist architecture. Cognitive Science (15), 219–250 (1991)

    Google Scholar 

  17. Komosinski, M., Ulatowski, S.: Framsticks: towards a simulation of a nature-like world, creatures and evolution. In: Proceedings of the 5th European Conference on Artificial Life. Springer, Berlin (1998)

    Google Scholar 

  18. Leffler, B.R., Littman, M.L., Edmunds, T.: Efficient reinforcement learning with relocatable action models. AAAI Journal, 572–577 (2007)

    Google Scholar 

  19. Lindenmayer, A.: Mathematical models for cellular interaction in development I. Filaments with one-sided inputs. Journal of Theoretical Biology 18, 280–289 (1968)

    Article  Google Scholar 

  20. Lipson, H., Pollack, J.: Automatic design and manufacture of artificial lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  21. Matarić, M.J., Nilsson, M., Simsarian, K.T.: Cooperative multi-robot box-pushing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 556–561 (1995)

    Google Scholar 

  22. Mautner, C., Belew, R.K.: Evolving Robot Morphology and Control. In: Sugisaka, M. (ed.) Proceedings of Artificial Life and Robotics 1999 (AROB 1999), Oita, ISAROB (1999)

    Google Scholar 

  23. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  24. Parker, C.A., Zhang, H., Kube, C.R.: Blind bulldozing: Multiple robot nest construction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2010–2015 (2003)

    Google Scholar 

  25. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  26. Roggen, D., Federici, D.: Multi-cellular Development: Is There Scalability and Robustnes to Gain? In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 391–400. Springer, Heidelberg (2004)

    Google Scholar 

  27. Sims, K.: Evolving 3D Morphology and Behavior by Competition. In: Proceedings of Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  28. Stanley, K., Miikkulainen, R.: Continual Coevolution through Complexification. In: Proceedings of the Genetic and Evolutionary Computation Conference 2002. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  29. Thangavelautham, J., Barfoot, T., D’Eleuterio, G.M.T.: Coevolving communication and cooperation for lattice formation tasks (updated). In: Advances In Artificial Life: Proceedings of the 7th European Conference on ALife, pp. 857–864 (2003)

    Google Scholar 

  30. Thangavelautham, J., D’Eleuterio, G.M.T.: A neuroevolutionary approach to emergent task decomposition. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 991–1000. Springer, Heidelberg (2004)

    Google Scholar 

  31. Thangavelautham, J., D’Eleuterio, G.M.T.: A coarse-coding framework for a gene-regulatory-based artificial neural tissue. In: Advances In Artificial Life: Proceedings of the 8th European Conference on ALife, pp. 67–77 (2005)

    Google Scholar 

  32. Thangavelautham, J., Alexander, S., Boucher, D., Richard, J., D’Eleuterio, G.M.T.: Evolving a Scalable Multirobot Controller Using an Artificial Neural Tissue Paradigm. In: IEEE International Conference on Robotics and Automation, Washington, D.C (2007)

    Google Scholar 

  33. Wawerla, J., Sukhatme, G., Mataric, M.: Collective construction with multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2696–2701 (2002)

    Google Scholar 

  34. Wilson, M., Melhuish, C., Sendova-Franks, A.B., Scholes, S.: Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Autonomous Robots 17, 115–136 (2004)

    Article  Google Scholar 

  35. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7038), 163–164 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thangavelautham, J., Grouchy, P., D’Eleuterio, G.M.T. (2010). Application of Coarse-Coding Techniques for Evolvable Multirobot Controllers. In: Tenne, Y., Goh, CK. (eds) Computational Intelligence in Optimization. Adaptation, Learning, and Optimization, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12775-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12775-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12774-8

  • Online ISBN: 978-3-642-12775-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics