Skip to main content

Concepts

  • Chapter
  • First Online:
Geobiology
  • 1201 Accesses

Abstract

The first part of this chapter (Sect. II.1) illustrates the complex interaction between benthic microbiota and their sedimentological environment. Although the sedimentological environment directs distribution and growth of benthic microbiota, the microbiota also influence their depositional habitat. These interactive processes produce MISS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  • Beveridge T (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  Google Scholar 

  • Black M (1933) The algal sediments of Andros Islands, Bahamas. Philos Trans R Soc Lond Series B 222:165–192

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nat 416:76–81

    Article  Google Scholar 

  • Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc Lond 361:887–902

    Article  Google Scholar 

  • Bridge J (2003) Rivers and floodplains: Forms, processes, and sedimentary record. Blackwell Publishing, Boston

    Google Scholar 

  • Briggs D (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Sci 31:275–301

    Google Scholar 

  • Browne K, Golubic S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits. In: Riding R, Awramik S (eds) Microbial sediments. Springer-Verlag, Berlin

    Google Scholar 

  • Buick R, Dunlop J, Groves D (1981) Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa: Australas J Palaeontol 5:161–181

    Article  Google Scholar 

  • Cameron B, Cameron D, Jones J (1985) Modern algal mats in intertidal and supratidal quartz sands, northeastern Massachusetts, USA. In: Curran A (ed) Biogenic structures: Their use in interpreting depositional environments. SEPM, Tulsa

    Google Scholar 

  • Church M (2003) Grain size and shape. In: Middleton G (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cohen Y, Rosenberg E (1989) Microbial mats: Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington

    Google Scholar 

  • Consalvey M, Jesus B, Perkins RG, Brotas V, Underwood GJC, Paterson DM (2004) Monitoring migration and measuring biomass in benthic biofilms: The effects of dark/far-red adaptation and vertical migration on fluorescence measurements. Photosynth Res 81:91–101

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  Google Scholar 

  • Dalrymple R, Choi K (2003) Sediment transport by tides. In: Middleton G (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Davies J (1964) A morphogenic approach to world shorelines. Z Geomorphol 8:127–142

    Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Sci 280:295

    Article  Google Scholar 

  • Decho A (1990) Microbial exopolymer secretions in ocean environments – their role(s) in food webs and marine processes. Oceanog Mar Biol 28:73–153

    Google Scholar 

  • Decho A (2000) Microbial biofilms in intertidal systems: An overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Decho A, Visscher P, Reid R (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeoclimatol Palaeoecol 219:71–86

    Article  Google Scholar 

  • Demicco R, Hardie L (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM, Tulsa

    Google Scholar 

  • Denny M (1993) Air and water: The biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  • Des Marais DJ, D’Amelio ED, Farmer JD, Jørgensen BB, Palmisano AC, Pierson BK (1992) Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico. In: Schopf W, Klein C (eds) The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, New York

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Draganits E, Noffke N (2004) Siliciclastic stromatolites and other microbially induced sedimentary structures in an early Devonian barrier-island environment (Muth Formation, NW Himalayas). J Sediment Res 74:191

    Article  Google Scholar 

  • Dyer K (1986) Coastal and estuarine sediment dynamics. Wiley and Sons, Sussex

    Google Scholar 

  • Ferris F, Fyfe W, Beveridge T (1987) Bacteria as nucleation sites for authigenic minerals in a metalcontaminated lake sediment. Chem Geol 63:225–232

    Article  Google Scholar 

  • Flemming B (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137

    Article  Google Scholar 

  • Flemming B (2003) Tidal flats. In: Middleton G (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Flemming H, Neu T, Wozniak D (2007) The EPS matrix: The ‘house of biofilm cells’. J Bacteriol 189: 7945–7947

    Article  Google Scholar 

  • Friedman G, Krumbein W, Gerdes G (1985) Hypersaline ecosystems: The Gavish Sabkha. Springer- Verlag, Berlin

    Google Scholar 

  • Friedman G, Sanders J, Kopaska-Merkel D (1992) Principles of sedimentary deposits: Stratigraphy and sedimentology. Macmillan, New York

    Google Scholar 

  • Fuqua C, Winans S, Greenberg E (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  Google Scholar 

  • Gerdes G, Klenke T (2003) Geologische Bedeutung ökologischer Zeiträume in biogener Schichtung (Mikrobenmatten, potentielle Stromatolithe). Mitt Ges Geol Bergbaustud Österreich 46:35–49

    Google Scholar 

  • Gerdes G, Krumbein W (1987) Biolaminated deposits. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Gerdes G, Krumbein W, Reineck H (1991) Biolaminations – Ecological versus depositional dynamics. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer-Verlag, Berlin

    Google Scholar 

  • Gerdes G, Klenke T, Noffke N (2000a) Microbial signatures in peritidal siliciclastic sediments: A catalogue. Sediment 47:279–308

    Article  Google Scholar 

  • Giblin A (1988) Pyrite formation in marshes during early diagenesis. Geomicrobiol J 6:77–97

    Article  Google Scholar 

  • Ginsburg RN (1991) Controversies about stromatolites: Vices and virtues. In: Müller DW, McKenzie JA, Weissert H (eds) Controversies in modern geology. Academic Press Limited, London, pp 25–36

    Google Scholar 

  • Grotzinger J, Rothman D (1996) An abiotic model for stromatolite morphogenesis. Nat 383:423–425

    Article  Google Scholar 

  • Hardie L, Garrett P (1977) Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas. John Hopkins University Press, Baltimore

    Google Scholar 

  • Harper M (1977) Movements. In: Werner D (ed) The biology of diatoms. Blackwell, New York

    Google Scholar 

  • Harrison J, Turner R, Marques L, Ceri H (2005) Biofilms. Am Sci 93:508–515 172

    Google Scholar 

  • Joint I (1981) Growth and survival of estuarine microalgae. In: Jones N, Wolff W (eds) Feeding and survival strategies of estuarine organisms. Plenum Press, New York

    Google Scholar 

  • Joubert L, Wolfaardt G, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187–197

    Article  Google Scholar 

  • Kelley JT, Belknap DF, Jacobson Jr GL, Jacobson HA (1988) The morphology and origin of salt marshes along the glaciated coastline of Maine, USA. J Coast Res 4:649–666

    Google Scholar 

  • Klausen MM, Thomsen TR, nielsen JL, Mikkelsen LH, Nielsen PH (2004) Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiol Ecol 50:123–132

    Article  Google Scholar 

  • Kolenbrander PE, Andersen RN, Kazmerzak K, Wu R, Palmer Jr RJ (1999) Spatial organization of oral bacteria in biofilms. Methods enzymol 310:322–332

    Article  Google Scholar 

  • Komar P (2003) Grain settling. In: Middleton G (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Boston

    Google Scholar 

  • Konhauser KO, Schultze-Lam S, Ferris FG, Fyfe WS, Longstaffe FJ, Beveridge TJ (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Applied Environ Microbiol 60:549

    Google Scholar 

  • Kropp J, Block A, von Bloh W, Klenke T, Schellnhuber HJ (1997) Multifractal characterization of microbially induced magnesian calcite formation in Recent tidal flat sediments. Sediment Geol 109:37–51

    Article  Google Scholar 

  • Krumbein W (1979) Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203

    Article  Google Scholar 

  • Krumbein W (1983) Stromatolites – The challenge of a term in space and time. Precambr Res 20: 493–531

    Article  Google Scholar 

  • Krumbein W (1994) Paracelsus und die muciliginischen Substanzen – 500 Jahre EPS-Forschung. Deutsche Gesellschaft für Mikrobiologie 1993:8–14

    Google Scholar 

  • Krumbein W, Paterson D, Stal L (1994) Biostabilization of sediments. BIS Oldenburg, Oldenburg

    Google Scholar 

  • Kruschel C, Castenholz R (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol Ecol 27:53–72

    Article  Google Scholar 

  • Kvale E (2003) Tides and tidal rhythmites. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lawrence J, Neu T, Swerhone G (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32:253–261

    Article  Google Scholar 

  • Marshall K (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge

    Google Scholar 

  • Middleton G, Southard J (1984) Mechanics of sediment movement. SEPM, Tulsa

    Google Scholar 

  • Miller M, McCave I, Komar P (1977) Threshold of sediment motion under unidirectional currents. Sedimentol 24:507–527

    Article  Google Scholar 

  • Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nat 353:60–62

    Article  Google Scholar 

  • Noffke N (1998) Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geol 26:879

    Article  Google Scholar 

  • Noffke N (1999) Erosional remnants and pockets evolving from biotic-physical interactions in a Recent lower supratidal environment. Sediment Geol 123:175–181

    Article  Google Scholar 

  • Noffke N (2000) Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sediment Geol 136:207–215

    Article  Google Scholar 

  • Noffke N (2009) The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180

    Article  Google Scholar 

  • Noffke N, Krumbein W (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentol 46:417–426

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1996) Microbially induced sedimentary structures-examples from modem sediments of siliciclastic tidal flats. Zbl Geol Palfiont Tell I 1:307–316 174

    Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1997a) A microscopic sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats. Sediment Geol 110:1–6

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001a) Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within Recent and Pleistocene coastal facies zones (southern Tunisia). Facies 44:23–30

    Article  Google Scholar 

  • Noffke N, Knoll A, Grotzinger J (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T (2003a) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62:163–176

    Article  Google Scholar 

  • Noffke N, Beukes N, Gutzmer J, Hazen R (2006a) Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa. Precambr Res 146:35–44

    Article  Google Scholar 

  • Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiol 6:5

    Google Scholar 

  • Palmer J, Round F (1965) Persistent, vertical-migration rhythms in benthic microflora. I. The effect of light and temperature on the rhythmic behaviour of Euglena obtusa. J Mar Biol 45:567–582

    Article  Google Scholar 

  • Paterson D (1994) Microbial mediation of sediment structure and behaviour. In: Stal L, Caumette P (eds) Microbial mats. Springer-Verlag, Berlin

    Google Scholar 

  • Paterson D (1997) Biological mediation of sediment erodibility: Ecology and physical dynamics. In: Burt N, et al. (eds) Cohesive sediments. Wiley, London

    Google Scholar 

  • Perry RS, McLoughlin N, Lynne BY, Sephton MA, Oliver JD, Perry CC, Campbell K, Engel MH, Farmer JD, Brasier MD, Staley JT (2007) Defining biominerals and organominerals: Direct and indirect indicators of life. Sediment Geol 201:157–179

    Article  Google Scholar 

  • Purser B (1973) The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag, New York

    Google Scholar 

  • Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:1–17

    Article  Google Scholar 

  • Round F (1981) The ecology of algae. Cambridge University Press, New York

    Google Scholar 

  • Ruby E (1996) Lessons from a cooperative, bacterial-animal association: The Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nat 416:73–76

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: Stromatolites and microfossils. Precambr Res 158:141–155

    Article  Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer-Verlag, Berlin

    Google Scholar 

  • Seong-Joo L, Browne K, Golubic S (2000) On stromatolite lamination. In: Riding R, Awramik S (eds) Microbial sediments. Springer-Verlag, Berlin

    Google Scholar 

  • Stal L (2000) Cyanobacterial mats and stromatolites. In: Whitton B, Potts M (eds) The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Staley J, Bryant M, Pfennig N (1989) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Stanier R, Adelberg E, Ingraham J (1976) The microbial world. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Stolz J (2000) Structure of microbial mats and biofilms. In: Riding R, Awramik S (eds) Microbial sediments. Springer-Verlag, Berlin

    Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  Google Scholar 

  • Sutherland I (1990) Biotechnology of microbial exopolysaccharides. Cambridge Univ Press, New York

    Book  Google Scholar 

  • Sutherland I (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  Google Scholar 

  • Vos P, De Boer P, Misdorp R (1988) Sediment stabilization by benthic diatoms in intertidal sandy shoals: Qualitative and quantitative observations. In: DeBoer P, et al. (eds) Tide-influenced sedimentary environments and facies. Reidel, Dordrecht

    Google Scholar 

  • Warren J (1999) Evaporites: Their evolution and economics. Blackwell, Oxford

    Google Scholar 

  • Whitton B, Potts M (2000) The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stalb LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Zhang X, Bishop P, Kupferle M (1998) Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci Technol 37:345–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Noffke, N. (2010). Concepts. In: Geobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12772-4_2

Download citation

Publish with us

Policies and ethics