Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

This chapter discusses prominent examples of global material cycles. This is of major significance in order to understand potential perturbation of the natural material cycles caused by man’s production or use of energy. As selected examples, carbon, water, nitrogen and oxygen cycles will be treated, and in addition aspects of some other material cycles (sulfur, phosphorus, chlorine) as well as interactions of cycles. Significant simplifications must be used in order to focus on the major points.

The Earth as a closed system (according to Sect. 1.2) is represented in the present discussion by a selection of several open (sub-)systems which exchange material species (and energy) by various processes (chemical reactions, transport processes, etc.). In the subsequent figures, subsystems are always displayed as boxes. Components in these subsystems may include chemical species and/or different physical phases (vapor, liquid, solid). Flows of species (potentially connected to energy flows) are depicted as arrows and may be linked to (bio)chemical reactions, phase changes or transport processes across subsystem boundaries. According to the rates of flow and to the reservoir inventories of individual components, a formal residence time τ can be defined as a characteristic quantity to represent a characteristic time scale for component i in a reservoir j (Eq. 4.1).

$$ \tau = \frac{m_{i}}{F_{m,i}} $$
((4.1))

All examples discussed in the following will be simplified as a (quasi-)steady-state situation, with time-averages of all annual flows involved. Rates of individual flows will differ significantly, based on different characteristics of the individual processes (e.g. chemical reaction, mass transfer, phase change etc.). Connections between material flows and energy flows have to be taken into account for processes where significant energy changes/heat effects are involved (chemical reactions, phase transitions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolin B (1970) The Carbon Cycle. Sci Amer 223:124–132

    Article  Google Scholar 

  • Brimblecombe P (2005) The Global Sulfur Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 362:655–661

    Article  Google Scholar 

  • Dong HD, Mégie G, Hauglustaine D (2003) A pro-active stratospheric ozone protection scenario. Global Environ Chang 13:43–49

    Article  Google Scholar 

  • Farman J, Gardiner B, Shanklin J (1985) Large losses of total ozone in Antarctica reveal seasonal ClO x /NO x interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive Nitrogen and The World: 200 Years of Change. Ambio 31:64–71

    Google Scholar 

  • Galloway JN (2005) The Global Nitrogen Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Garrels RM, Lerman A (1981) Phanerozoic cycles of sedimentary carbon and sulfur. Proc Natl Acad Sci USA 78:4652–4656

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 416:716–718

    Article  Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1698

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • Hupfer P, Kuttler W (eds) (2005) Witterung und Klima, Eine Einführung in die Meteorologie und Klimatologie. B.G. Teubner Verlag, Stuttgart

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Chapter 7 – Couplings Between Changes in the Climate System and Biogeochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson MF, Charlson RJ, Rodhe H, Orians G (eds) (2000) Earth System Science. From Biogeochemical Cycles to Global Changes. Elsevier Academic Press, London

    Google Scholar 

  • Keeling RF, Najjar RP, Bender ML, Tans PP (1993) What Atmospheric Oxygen Measurements Can Tell Us About the Global Carbon Cycle. Global Biogeochem Cy 7:37–67

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological Plant Ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Moussallem I, Jörissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194

    Article  CAS  Google Scholar 

  • O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chloralkali technology. Springer, New York

    Google Scholar 

  • Öberg G (2002) The natural chlorine cycle – fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581

    Article  Google Scholar 

  • Petsch ST (2005) The Global Oxygen Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Rowland MJ, Molina FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 239:810–812

    Google Scholar 

  • Ruttenberg KC (2005) The Global Phosphorus Cycle. In: Schlesinger WH (ed) Biogeochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Article  CAS  Google Scholar 

  • Schönwiese CD (2008) Klimatologie. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Schultz J (2000) Handbuch der Ökozonen. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  CAS  Google Scholar 

  • Smil V (2001) Enriching the Earth. MIT Press, Cambridge

    Google Scholar 

  • Tabazadeh A, Cordero EC (2004) New Directions: Stratospheric ozone recovery in a changing atmosphere. Atmos Environ 38:647–649

    Article  CAS  Google Scholar 

  • Van Krevelen DW (1961) Coal: Typology, Chemistry, Physics, Constitution. Elsevier, Amsterdam

    Google Scholar 

  • Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the ozone layer. Nature 441:39–45

    Article  CAS  Google Scholar 

  • Zehnder ABJ (2001) Wasserressourcen und Bevölkerungsentwicklung. Nova Acta Leopoldina NF 85:399–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Schaub, G., Turek, T. (2011). Global Material Cycles. In: Energy Flows, Material Cycles and Global Development. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12736-6_4

Download citation

Publish with us

Policies and ethics