Use of Airborne Laser Scanning Data for a Revision and Update of a Digital Forest Map and its Descriptive Database: A Case Study from the Tatra National Park

  • Piotr WężykEmail author
  • Marta Szostak
  • Piotr Tompalski
Part of the Environmental Science and Engineering book series (ESE)


The aim of this study was to elaborate the semiautomatic method of airborne laser scanning (ALS) point-cloud data processing for revising a digital forest map in the Tatra National Park, Poland, and updating attributes stored in its descriptive forest database. We proved that elements such as gaps, clearings, biogroups, dead trees, wind-damaged trees, and areas of low canopy closure could be detected with high accuracy, based on this light detection and ranging technology. By using this method and geographic information system techniques, we were able to update selected attributes of the descriptive database, such as forest stand height, which were collected during earlier forest inventories. Moreover, parameters of some parts of forest stands, such as those growing on extremely steep slopes or isolated ledges that are hard to determine using traditional methods, are easily measured with ALS technology. The difference in stand height using the ALS method and that measured by the traditional forest inventory was equal to 1.58 m (2.87 m for absolute differences).


Geographic Information System Forest Inventory Digital Terrain Model Stand Height Airborne Laser Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham J, Adolt R (2006) Stand height estimations using aerial images and laser scanning data. EARSeL. In: Proceedings of the workshop on 3D remote sensing in forestry, AustriaGoogle Scholar
  2. Andersen HE, Reutebuch SE, Mcgaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens 32(5):355–366CrossRefGoogle Scholar
  3. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33/4B:203–210Google Scholar
  4. de Kok R, Wężyk P (2008) Principles of full autonomy in image interpretation. The basic architectural design for a sequential process with image objects. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. series: lecture notes in geoinformation and cartography. Springer, BerlinGoogle Scholar
  5. Goluch P, Borkowski A, Jozkow G, Tymkow P, Mokwa M (2009) Application of digital terrain model generated from airborne laser scanning data in hydrodynamic modelling. St Geotech Mech 31(3):61–72Google Scholar
  6. Hollaus M, Dorigo W, Wagner W, Schadauer K, Höfle B, Maier B (2009) Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data. Int J Remote Sens 30(19):5159–5175CrossRefGoogle Scholar
  7. Hollaus M, Wagner W, Eberhöfer C, Karel W (2006) Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS J Photogramm Remote Sens 60(5):323–338CrossRefGoogle Scholar
  8. Holmgren J, Jonsson T (2004) Large scale airborne laser scanning of forest resources in Sweden. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):157–160Google Scholar
  9. Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finl 16(2):27–42Google Scholar
  10. Hyyppä J, Hyyppä H, Litkey P, Yu X, Haggrén H, Rönnholm P, Pyysalo U, Pitkanen J, Maltamo M (2004) Algorithms and methods of airborne laser-scanning for forest measurements. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):82–89Google Scholar
  11. IUL (2003) Forest management guide. Part 3. Polish State Forest Holding, WarsawGoogle Scholar
  12. Kane R, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin JF (2010) Comparisons between field- and LiDAR-based measures of stand structural complexity. Can J For Res 40(4):761–773CrossRefGoogle Scholar
  13. Maltamo M, Mustonen K, Hyyppä J, Pitkänen J, Yu X (2004) The accuracy of estimating individual tree variables with airborne laser scanning in boreal nature reserve. Can J For Res 34(9):1791–1801CrossRefGoogle Scholar
  14. McGaughey RJ (2007) Fusion/ldv: Software for lidar data analysis and visualization. Software manual USDA Forest Service, Pacific Northwest Research Station University of Washington, SeattleGoogle Scholar
  15. McGaughey R, Carson W, Reutebuch S, Andersen H-E (2004) Direct measurement of individual tree characteristics from LIDAR data. In: Proceedings of the annual ASPRS conference, Denver, 23–28 May 2004. American Society of Photogrammetry and Remote Sensing (ASPRS), BethesdaGoogle Scholar
  16. Næsset E, Okland T (2002) Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens Environ 79:105–115CrossRefGoogle Scholar
  17. Persson A, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68(9):925–932Google Scholar
  18. Tompalski P, Wężyk P, de Kok R, Kukawski M (2009) Determining the number of trees using airborne laser scanning and true orthoimagery. Ann Geomat 7(2):133–141Google Scholar
  19. Trimble (2010) Cognition developer 8.0.2 reference book. Trimble Documentation, MunichGoogle Scholar
  20. Wężyk P, Borowiec N, Szombara S, Wańczyk R (2008a) Generation of digital surface and terrain models of the Tatras Mountains based on airborne laser scanning (ALS) point cloud. Arch Fotogram Kartogr Teledetekcji 18:651–661Google Scholar
  21. Wężyk P, Mansberger R (1997) Przykład wykorzystania ortofotografii cyfrowej i systemu GIS w leśnictwie. Arch Fotogram Kartogr Teledetekcji 6:133–151Google Scholar
  22. Wężyk P, Solecki K (2008) Airborne laser scanning (ALS): based determination of the Chojna forest district tree stand heights. Arch Fotogram Kartogr Teledetekcji 18:663–672Google Scholar
  23. Wężyk P, Szostak M, Tompalski P (2010) Aktualizacja baz danych SILP oraz LMN w oparciu o dane lotniczego skaningu laserowego. Arch Fotogram Kartogr Teledetekcji 21:437–446Google Scholar
  24. Wężyk P, Tompalski P, Szostak M, Glista M, Pierzchalski M (2008b) Describing the selected canopy layer parameters of the Scots pine stands using ALS data. In: Hill RA, Rosette J, Suarez J (eds) Proceedings of SilviLaser 2008: 8th international conference on LiDAR applications in forest assessment and inventory, September 2008. Edinburgh, UKGoogle Scholar
  25. Yu X, Hyyppä J, Hyyppä H, Maltamo M (2004) Effects of flight altitude on tree height estimation using airborne laser-scanning. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):96–101Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Forest EcologyAgricultural University of KrakówKrakówPoland

Personalised recommendations