Skip to main content

Landslide Susceptibility Assessment: GIS Application to a Complex Mountainous Environment

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

This study attempts to quantify landslide susceptibility in the upper Putna River basin in the Romanian Carpathians Bend using GIS techniques and logistic regression. First, a detailed landslide inventory was carried out and a GIS database was built, comprising potential predictors of landslide occurrence. The GIS database included 11 quantitative predictors, mostly geomorphometric parameters, and 4 qualitative predictors which were transformed into quantitative variables using landslide density approach. The logistic regression analysis, combined with a stepwise selection of the predictors, showed that landslide occurrence is best explained by slope inclination class, altitude, soil class, distance to drainage network and surface geology. The results show that the potentially unstable terrains, displaying high and very high landslide susceptibility values, cover an area about 3 times greater than the mapped landslide area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  • Bai SB, Wang J, Lü GN, Zhou PG, Hou SS, Xu SN (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphol 115:23–31

    Article  Google Scholar 

  • Barredo JI, Benavides A, Hervas J, van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf 2:9–23

    Article  Google Scholar 

  • Bălteanu D (1979) Procese de modelare a versanţilor declanşate de cutremurul din 4 martie 1977 în Carpaţii şi Supcarpaţii Buzăului. Stud Cercet Geol Geofiz Geogr Ser Geogr 26

    Google Scholar 

  • Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphol 124:102–112

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P (1998) Slope instability zonation: a comparison between certainty factor and fuzzy dempster-shafer approaches. Nat Hazards 17:77–97

    Article  Google Scholar 

  • Borgogno Mondino E, Giardino M, Perotti L (2009) A neural network method for analysis of hyperspectral imagery with application to the Cassas landslide (Susa Valley, NW-Italy). Geomorphol 110:20–27

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Landf 16:427–445

    Article  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphol 94:453–466

    Article  Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Dumitrescu I, Săndulescu M, Bandrabur T (1970) The geological map of Romania, Covasna sheet, scale 1:100,000. Com de Stat al Geologiei, Bucharest

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Grozavu A, Mărgărint MC, Patriche CV (2010) GIS applications for landslide susceptibility assessment: a case study in Iaşi County (Moldavian Plateau, Romania). In: Brebbia CA (ed.) Risk Analysis VII & Brownfields V, WIT Press, Southampton, pp 393–404

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphol 31:181–216

    Article  Google Scholar 

  • Ichim I, Rădoane M, Rădoane N, Miclăuş C, Grasu C (1996) Sediment budget of the Putna drainage basin (Vrancea). Rev Roum Geogr 40:125–132

    Google Scholar 

  • Ichim I, Rădoane M, Rădoane N, Grasu C, Miclăuş C (1998) Dinamica sedimentelor. Aplicaţie la râul Putna-Vrancea, Editura Tehnica, Bucharest

    Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphol 74:17–28

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multi-criteria decision analysis. Wiley, New York

    Google Scholar 

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphol 15:213–225

    Article  Google Scholar 

  • Micu M, Bălteanu D (2009) Landslide hazard assessment in the Bend Carpathians and Subcarpathians, Romania. Z Geomorphol 53(3):49–64

    Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (eastern Black Sea region of Turkey). Geomorphol 94:410–418

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds) Landslides: Investigation and Mitigation. Transport Research Board Special Report 247, National Research Council, Washington, DC

    Google Scholar 

  • Süzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Env Geol 45:665–679

    Article  Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphol 92:38–59

    Article  Google Scholar 

  • Tufescu V (1966) Subcarpaţii. Editura Ştiinţifică, Bucharest

    Google Scholar 

  • Ursu A (2006) The use of Geographic Informational Systems in the study of natural hazards. Geogr Tech 2:113–120

    Google Scholar 

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphol 115:141–155

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proceedings, 5th International Symposium on Landslides. Balkema, Rotterdam

    Google Scholar 

Download references

Acknowledgments

This study was carried out with financial support from the project POSDRU/89/1.5/S/49944 coordinated by „Al. I. Cuza” University of Iaşi, Romania. The authors wish to thank the reviewers whose comments and corrections were extremely useful for the improvement of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Grozavu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grozavu, A., Pleşcan, S., Patriche, C.V., Mărgărint, M.C., Roşca, B. (2013). Landslide Susceptibility Assessment: GIS Application to a Complex Mountainous Environment. In: Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyżga, B. (eds) The Carpathians: Integrating Nature and Society Towards Sustainability. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12725-0_4

Download citation

Publish with us

Policies and ethics