Advertisement

Environmental and Land Use Determinants of Stream Water Chemistry During Flood Events in Small Carpathian Foothill Catchments in Poland

  • Joanna P. SiwekEmail author
  • Mirosław Żelazny
  • Wojciech Chełmicki
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The goal of the research was to determine which factors control changes in the chemical composition of stream water during floods of different types: storm floods, frontal precipitation floods, and snowmelt floods. Three catchments in the Carpathian Foothills of woodland, agricultural and of mixed land use were examined and the data were explored with R-mode factor analysis. Three factors driving changes in the chemical composition of stream water during floods of particular types were identified for each catchment. The first factor (hydrological) is related to the magnitude of flow, the second factor (meteorological) is linked with air temperature and soil temperature, and the third factor (circulation) is related to mechanisms of water transfer to stream channels (surface runoff, shallow throughflow). The fourth factor (anthropogenic), related to the dilution of highly polluted pre-event waters with less polluted event waters, was identified only for the anthropogenically altered, agricultural and mixed-use catchments.

Keywords

Surface Runoff Flood Event Stream Channel Fourth Factor Biogenic Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research project was funded by the Polish Committee for Scientific Research (Project 3 P04G 050 22).

References

  1. Abesser C, Robinson R, Soulsby C (2006) Iron and manganese cycling in the storm runoff of a Scottish upland catchment. J Hydrol 326:59–78CrossRefGoogle Scholar
  2. Bazemore DE, Eshleman KN, Hollenback KJ (1994) The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence. J Hydrol 162:47–75CrossRefGoogle Scholar
  3. Bernal S, Butturini A, Sabater F (2002) Variability of DOC and nitrate responses to storms in a small Mediterranean forested catchment. Hydrol Earth Syst Sci 6:1031–1041CrossRefGoogle Scholar
  4. Bhangu I, Whitfield PH (1997) Seasonal and long-term variations in water quality of the Skeena River at Usk, British Columbia. Water Res 31:2187–2194CrossRefGoogle Scholar
  5. Brown VA, McDonnell JJ, Burns DA, Kendall C (1999) The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. J Hydrol 217:171–190CrossRefGoogle Scholar
  6. Caissie D, Pollock TL, Cunjak RA (1996) Variation in stream water chemistry and hydrograph separation in a small drainage basin. J Hydrol 178:137–157CrossRefGoogle Scholar
  7. Cameron EM (1996) Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. J Hydrol 182:206–225Google Scholar
  8. Chełmicki W (2005) Dynamika odpływu. In: Żelazny M (ed) Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, KrakówGoogle Scholar
  9. Davis JC (1973) Statistics and data analysis in geology. Wiley, New YorkGoogle Scholar
  10. Dragon K (2006) Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). J Hydrol 331:272–279CrossRefGoogle Scholar
  11. Drever JI (1997) The geochemistry of natural water. Surface and groundwater environments. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. Edwards AMC (1973) The variation of dissolved constituents with discharge in some Norfolk Rivers. J Hydrol 18:219–242CrossRefGoogle Scholar
  13. Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–137CrossRefGoogle Scholar
  14. Evans CD, Davies TD, Wigington PJ Jr, Tranter M, Kretser WA (1996) Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York. J Hydrol 185:297–316CrossRefGoogle Scholar
  15. Foster IDL (1978) A multivariate model of storm-period solute behaviour. J Hydrol 39:339–353CrossRefGoogle Scholar
  16. Fucik P, Kvitek T, Lexa M, Novak P, Bilkova A (2008) Assessing the stream water quality in connection with land use in agricultural catchments of different scales. Soil Water Res 3:98–112Google Scholar
  17. Hem JD (1985) Study and interpretation of the characteristics of natural water. US Geol Surv Water Supply Paper 2254:1–263Google Scholar
  18. Hinton MJ, Schiff SL, English MC (1994) Examining the contributions of glacial till water to storm runoff using two- and three-component hydrograph separations. Water Resour Res 30:983–993CrossRefGoogle Scholar
  19. Holloway JM, Dahlgren RA (2001) Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. J Hydrol 250:106–121CrossRefGoogle Scholar
  20. Jaszczyńska B (2005) Metodyka analiz chemicznych. In: Żelazny M (ed) Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, KrakówGoogle Scholar
  21. Johnson AH, Bouldin DR, Goyette EA, Hedges AM (1976) Phosphorus loss by stream transport from a rural watershed: quantities, processes, and sources. J Environ Qual 5:148–157CrossRefGoogle Scholar
  22. Kendall KA, Shanley JB, McDonnell JJ (1999) A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. J Hydrol 219:188–205CrossRefGoogle Scholar
  23. Kozak J, Estreguil C, Troll M (2007) Forest cover changes in the northern Carpathians in the 20th century: a slow transition. J Land Use Sci 2:127–146CrossRefGoogle Scholar
  24. Laudon H, Seibert J, Kohler S, Bishop K (2004) Hydrological flow paths during snowmelt: congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resour Res 40:W03102Google Scholar
  25. Likens GE, Driscoll CT, Buso DC, Siccama DF, Johnson CE, Lovett GM, Ryan DF, Fahey T, Reiners WA (1994) The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25:61–125CrossRefGoogle Scholar
  26. Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two southern African case studies. Phys Chem Earth 29:1135–1143CrossRefGoogle Scholar
  27. McGlynn BL, McDonnell JJ, Shanley JB, Kendall C (1999) Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. J Hydrol 222:75–92CrossRefGoogle Scholar
  28. Miller WR, Drever JI (1977) Water chemistry of a stream following a storm, Absaroka Mountains, Wyoming. Geol Soc Am Bull 80:286–290CrossRefGoogle Scholar
  29. Olewicz ZR (1973) Tektonika jednostki bocheńskiej i brzegu jednostki śląskiej między Rabą a Uszwicą. Acta Geol Pol 23:701–761Google Scholar
  30. Panda UCh, Sundaray SK, Rath P, Nabak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems—a case study: Mahanadi River (India). J Hydrol 331:434–445CrossRefGoogle Scholar
  31. Poor CJ, McDonnell JJ (2007) The effects of land use on stream nitrate dynamics. J Hydrol 332:54–68CrossRefGoogle Scholar
  32. Sandén P, Karlsson S, Düker A, Ledin A, Lundman L (1997) Variations in hydrochemistry, trace metal concentration and transport during a rain storm event in a small catchment. J Geochem Explor 58:145–155CrossRefGoogle Scholar
  33. Shaw G, Wheeler D (1997) Statistical techniques in geographical analysis. David Fulton Publishers, LondonGoogle Scholar
  34. Siwek JP, Żelazny M, Chełmicki W (2008) Annual changes in the chemical composition of stream water in small catchments with different land-use (Carpathian Foothills, Poland). Soil Water Res 3:129–137Google Scholar
  35. Siwek JP, Żelazny M, Chełmicki W (2009) The influence of water circulation on stream water electrical conductivity in catchments with different land use during flood periods (The Carpathian Foothills, Poland). IHP-UNESCO Tech Doc in Hydrol 84:75–80Google Scholar
  36. Siwek JP, Żelazny M, Chełmicki W (2011) Influence of catchment characteristics and flood type on relationship between streamwater chemistry and streamflow: case study from Carpathian Foothills in Poland. Water Air Soil Pollut 214:547–563CrossRefGoogle Scholar
  37. Skiba S, Drewnik M, Klimek M, Szmuc R (1998) Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica rivers. Pr Geogr 103:125–135Google Scholar
  38. Stålnacke P, Grimvall A, Libiseller C, Laznik M, Kokorite I (2003) Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture. J Hydrol 283:184–205CrossRefGoogle Scholar
  39. Stottlemyer R (2001) Processes regulating watershed chemical export during snowmelt, Fraser Experimental Forest, Colorado. J Hydrol 245:177–195CrossRefGoogle Scholar
  40. Suzuki K (1995) Hydrochemical study of snow meltwater and snow cover, Biogeochemistry of seasonally snow-covered catchments. IAHS Publ 228:107–114Google Scholar
  41. Święchowicz J (2005) Zróżnicowanie i zmiany koncentracji zawiesiny. In: Żelazny M (ed) Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, KrakówGoogle Scholar
  42. Walling DE, Foster IDL (1975) Variations in the natural chemical concentration of river water during flood flows, and the lag effect: some further comments. J Hydrol 26:237–244CrossRefGoogle Scholar
  43. Walling DE, Webb BW (1980) The spatial dimension in the interpretation of stream solute behaviour. J Hydrol 47:129–149CrossRefGoogle Scholar
  44. Wyżga B (2008) A review on channel incision in the Polish Carpathian rivers during the 20th century. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed Rivers VI—from process understanding to river restoration. Elsevier, AmsterdamGoogle Scholar
  45. Żelazny M (ed) (2005) Cechy fizykochemiczne opadów atmosferycznych. Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, KrakówGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joanna P. Siwek
    • 1
    • 2
    Email author
  • Mirosław Żelazny
    • 1
  • Wojciech Chełmicki
    • 1
  1. 1.Institute of Geography and Spatial ManagementJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Tourism and RecreationUniversity of Physical EducationKrakówPoland

Personalised recommendations