Skip to main content

Ω-Arithmetization of Ellipses

  • Conference paper
Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Abstract

Multi-resolution analysis and numerical precision problems are very important subjects in fields like image analysis or geometrical modeling. In the continuation of our previous works, we propose to apply the method of Ω-arithmetization to ellipses. We obtain a discrete multi-resolution representation of arcs of ellipses. The corresponding algorithms are completely constructive and thus, can be exactly translated into functional computer programs. Moreover, we give a global condition for the connectivity of the discrete curves generated by the method at every scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, E.: Discrete circles, rings and spheres. Computer and Graphics 18(5), 695–706 (1994)

    Article  Google Scholar 

  2. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Comm. of ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  3. Bridges, D.S.: Constructive mathematics: A foundation for computable analysis. Theor. Comput. Sci. 219(1-2), 95–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recognition 42(10), 2220–2228 (2009)

    Article  MATH  Google Scholar 

  5. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: ω-arithmetization: a discrete multi-resolution representation of real functions. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 316–329. Springer, Heidelberg (2009)

    Google Scholar 

  6. Diener, M.: Application du calcul de Harthong-Reeb aux routines graphiques. In: Salanskis, J.-M., Sinaceurs, H. (eds.) Le Labyrinthe du Continu, pp. 424–435. Springer, Heidelberg (1992)

    Google Scholar 

  7. Fuchs, L., Largeteau-Skapin, G., Wallet, G., Andres, E., Chollet, A.: A first look into a formal and constructive approach for discrete geometry using nonstandard analysis. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 21–32. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Harthong, J.: Éléments pour une théorie du continu. Astérisque (109/110), 235–244 (1983)

    Google Scholar 

  9. Holin, H.: Harthong-Reeb circles. Séminaire Non Standard, Univ. de Paris 7 (89/2), 1–30 (1989)

    Google Scholar 

  10. Holin, H.: Harthong-Reeb analysis and digital circles. The Visual Computer 8(1), 8–17 (1991)

    Article  Google Scholar 

  11. INRIA-consortium. Le langage Caml, http://www.ocaml.org/

  12. Laugwitz, D.: Ω-calculus as a generalization of field extension. In: Hurd, A. (ed.) Nonstandard Analysis – Recent Developments. Lecture Notes in Mathematics, vol. 983, pp. 144–155. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  13. Schmieden, C., Laugwitz, D.: Eine erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift 69(1), 1–39 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  14. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic, Methodology and Philosophy of Science VI, pp. 153–175 (1980)

    Google Scholar 

  15. Martin-Löf, P.: Intuitionnistic Type Theory. Bibliopolis, Napoli (1984)

    Google Scholar 

  16. Martin-Löf, P.: Mathematics of infinity. In: Gilbert, J.R., Karlsson, R. (eds.) COLOG 1988. LNCS, vol. 417, pp. 146–197. Springer, Heidelberg (1990)

    Google Scholar 

  17. Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6), 1165–1198 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Reveillès, J.-P.: Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  19. Richard, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Arithmetization of a circular arc. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 350–361. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Robinson, A.: Non-standard Analysis, 2nd edn. American Elsevier, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chollet, A., Wallet, G., Andres, E., Fuchs, L., Largeteau-Skapin, G., Richard, A. (2010). Ω-Arithmetization of Ellipses. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics