Skip to main content

Fast Automatic Microstructural Segmentation of Ferrous Alloy Samples Using Optimum-Path Forest

  • Conference paper
Book cover Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Abstract

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, V.H.C., Alexandria, A.R., Cortez, P.C., Tavares, J.M.R.S.: Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT & E International 42(7), 644–651 (2009)

    Article  Google Scholar 

  2. Albuquerque, V.H.C., Cortez, P.C., Alexandria, A.R., Tavares, J.M.R.S.: A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network. Non-destructive Testing and Evaluation 23(4), 273–283 (2008)

    Article  Google Scholar 

  3. Callister, W.D.: Materials Science and Engineering: An Introduction. John Wiley & Sons Inc., New York (2006)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libSVM

  5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. De Santis, A., Di Bartolomeo, O., Iacoviello, D., Iacoviello, F.: Quantitative shape evaluation of graphite particles in ductile iron. Journal of Materials Processing Technology 196, 292–302 (2008)

    Article  Google Scholar 

  7. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithm and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)

    Article  Google Scholar 

  8. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    Google Scholar 

  9. Gomes, O.F.M., Paciornik, S.: Automatic classification of graphite in cast iron. Microscopy and Microanalysis 11, 363–371 (2005)

    Article  Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  11. Jiang, H., Tan, Y., Lei, J., Zeng, L., Zhang, Z., Hu, J.: Auto-analysis system for graphite morphology of grey cast iron. Journal of Automated Methods & Management in Chemistry 25(4), 87–92 (2003)

    Article  Google Scholar 

  12. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology 19(2), 120–131 (2009)

    Article  Google Scholar 

  13. Papa, J.P., Suzuki, C.T.N., Falcão, A.X.: LibOPF: A library for the design of optimum-path forest classifiers (2008), http://www.ic.unicamp.br/~afalcao/LibOPF

  14. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier complexity. In: Proceedings of the 23rd International Conference on Machine Learning, vol. 8, pp. 753–760 (2006)

    Google Scholar 

  15. Scozzafava, A., Tomesani, L., Zucchelli, A.: Image analysis automation of spheroidal cast iron. Journal of Materials Processing Technology 153-154, 853–859 (2004)

    Article  Google Scholar 

  16. Tang, B., Mazzoni, D.: Multiclass Reduced-set Support Vector Machines. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 921–928 (2006)

    Google Scholar 

  17. Zhibin, C., Yongquan, Y., Heqing, C., Shaomin, Y.: Fuzzy recognition of graphite morphology in nodular cast iron based on evolution strategy. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 8, pp. 4930–4935 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papa, J.P., de Albuquerque, V.H.C., Falcão, A.X., Tavares, J.M.R.S. (2010). Fast Automatic Microstructural Segmentation of Ferrous Alloy Samples Using Optimum-Path Forest. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics