Advertisement

Optimal Local Map Registration for Wireless Sensor Network Localization Problems

  • Yifeng Zhou
  • Louise Lamont
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 64)

Abstract

In this chapter, we present an optimal local map registration algorithm for constructing global maps from local relative maps for wireless network localization applications. A wireless network is partitioned into sub-networks with overlapping or common nodes that shared by different sub-networks. Local maps are built for each sub-network, which consist of the relative coordinates of nodes in each network. The local maps are then transformed into a global map using a set of affine transforms with each consisting of a rotation, a reflection and a translation for each individual local map. The optimal transform is found by minimizing the discrepancies, in the global map, of the common sensor nodes shared by different local maps. A computationally efficient gradient projection algorithm is developed for finding the optimal transforms. The local map registration approach can solve many of the problems encountered by pairwise map merging based techniques and is able to achieve global optimal performance. More importantly, the technique provides a systematic approach for constructing global maps from local maps. Computer simulations are used to demonstrate the performance and effectiveness of the proposed algorithm.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Root Mean Square Anchor Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Biagioni, E., Bridges, K.: The application of remote sensor technology to assist the recovery of rare and endangered species. International Journal of High Performance Computing Applications 16(3), 315–324 (2002)CrossRefGoogle Scholar
  3. 3.
    Bertsekas, D.P.: Nonlinear programming, 2nd edn. Athena Scientific (1999)Google Scholar
  4. 4.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling, Theory and Applications. Springer, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat monitoring: application driver for wireless communications technology. In: Proc. the First ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean, San Jose, Costa Rica, April 2001, pp. 20–41 (2001)Google Scholar
  6. 6.
    Chong, C.Y., Kumar, S.: Sensor networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)CrossRefGoogle Scholar
  7. 7.
    Chung, F.R.K.: Spectra Graph Theory. American Mathematical Society, Providence (1997)Google Scholar
  8. 8.
    Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Meboo Publishing (2005)Google Scholar
  9. 9.
    Dennisand, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs (1983)Google Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Golub, G.H., Van Loan, C.F.: Matrix Computation, 2nd edn. The Johns Hopkins University Press, London (1990)Google Scholar
  12. 12.
    Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Horn, B.K.P., Hilden, H., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. Journal of the Optical Society of America A 5(7), 1127–1135 (1988)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jennrich, R.I.: A simple general procedure for orthogonal rotation. Psychometrika 66(2), 289–306 (2001)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jennrich, R.I.: A simple general method for oblique rotation. Psychometrika 67(1), 7–19 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ji, X., Zha, H.: Sensor positioning in wireless ad hoc networks using multidimensional scaling. In: Proc. IEEE 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong, China, March 2004, vol. 4, pp. 2652–2661 (2004)Google Scholar
  17. 17.
    Kwon, O.H., Song, H.J.: Localization through map stitching in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 19(1), 93–105 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Li, L., Kunz, T.: Cooperative node localization for tactical wireless sensor networks. In: Proc. 2007 Military Communications Conference (Milcom 2007), Orlando, FL, USA, (October 2007)Google Scholar
  19. 19.
    Luenberger, D.G.: Introduction to linear and nonlinear programming, Optimization techniques. Addison-Wesley, Reading (1973)Google Scholar
  20. 20.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proc. the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, US, September 2002, pp. 88–97 (2002)Google Scholar
  21. 21.
    Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization techniques. Computer Networks 51(10), 2529–2553 (2007)zbMATHCrossRefGoogle Scholar
  22. 22.
    Meertens, L., Fitzpatrick, S.: The distributed construction of a global coordinate system in a network of static computational nodes from inter-node distances. Kestrel Institute Technical Report KES.U.04.04, Kestrel Institute, Palo Alto, California (2004)Google Scholar
  23. 23.
    Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: Proc. the 2nd International Conference on Embedded Networked Sensor Systems (SenSys 2004), Baltimore, Maryland, November 2004, pp. 50–61 (2004)Google Scholar
  24. 24.
    Schönemann, P.H.: A generalized solution of the orthogonal Procrustes problem. Psychometrika 31(1), 1–10 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schwiebert, L., Gupta, S., Weinmann, J.: Research challenges in wireless networks of biomedical sensors. In: Proc. the 7th annual International Conference on Mobile Computing and Networking, Rome, Italy, July 2001, pp. 151–165 (2001)Google Scholar
  26. 26.
    Shang, Y., Ruml, W.: Improved MDS-based localization. In: Proc. IEEE the 23rd Annu. Joint Conf. of the IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong, China, March 2004, vol. 4, pp. 2640–2651 (2004)Google Scholar
  27. 27.
    Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.: Localization from connectivity in sensor networks. IEEE Trans. Parallel Distri. Sys. 15(11), 961–974 (2004)CrossRefGoogle Scholar
  28. 28.
    Steere, D.C., Baptista, A., McNamee, D., Pu, C., Walpole, J.: Research challenges in environmental observation and forecasting systems. In: Proc. the Sixth Annual International Conference on Mobile Computing and Networking, Boston, Massachusetts, US, August 2000, pp. 292–299 (2000)Google Scholar
  29. 29.
    Stojmenović, I. (ed.): Handbook of Sensor Networks: Algorithms and Architecture. John Wiley & Sons, Chichester (September 2005)Google Scholar
  30. 30.
    D. Waller, I. Chapman and M. Michaud-Shields, “Concept of operations for the self-healing autonomous sensor network”. Defence R& D Canada Technical Memorandum, TM 2008-052, July 2009Google Scholar
  31. 31.
    Warshall, S.: A theorem on Boolean matrices. Journal of the ACM 9(1), 11–12 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Young, F.W., Hamer, R.M.: Multidimensional Scaling: History, Theory and Applications. Erlbaum, New York (1987)Google Scholar
  33. 33.
    Zhou, Y., Lamont, L.: An optimal local map registration technique for wireless sensor network localization problems. In: Proc. 11th International Conference on Information Fusion, Cologne, Germany, July 2008, pp. 1–8 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yifeng Zhou
    • 1
  • Louise Lamont
    • 1
  1. 1.Communications Research CentreCanada

Personalised recommendations