Advertisement

An EM-IMM Method for Simultaneous Registration and Fusion of Multiple Radars and ESM Sensors

  • Dongliang Huang
  • Henry Leung
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 64)

Abstract

In a multiple sensor tracking scenario, measurements originated from the target of interest are necessarily aligned and fused to provide accurate information about the target. The process known as registration and fusion is generally casted as a joint parameter and state estimation problem for a single target case. The standard solution to this problem is the augmented Kalman filter (AKF) which takes the parameters as variables in the state vector. Despite of its easy implementation, the AKF is not favorable for large number of unknown parameters, as is the case for multiple sensors. Moreover, it is prone to numerical inaccuracy or divergence in application. In this paper, we evaluate the divergence problem of the AKF in simultaneous registration and fusion for the Radar/ESM sensors. Furthermore, we propose an expectation-maximization (EM) method in the maximum likelihood estimation (MLE) framework. In particular, to account for the maneuverability of the target, the interacting multiple model (IMM) filter implemented either by an extended Kalman filter (EKF) or by an unscented Kalman filter (UKF) is embedded into the conditional expectation evaluation in the E-step. The proposed joint registration and fusion method is thus called EM-IMM. Analysis shows that the EM method is convergent and furthermore leads to asymptotically unbiased estimate in an approximation sense. To evaluate the estimation performance, a direct inverse computation algorithm of Fisher information matrix (FIM) in posterior Cramer-Rao bound (PCRB) is also developed. Simulation results are given to demonstrate the effectiveness of the proposed method.

Keywords

Extended Kalman Filter Fisher Information Matrix Unscented Kalman Filter Sensor Bias Simultaneous Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Shalom, Y.: Multiarget-Multisensor Tracking: Advanced Applications. Artech House, Norwood (1990)Google Scholar
  2. 2.
    Makarenko, A.A., Kaupp, T., Durrant-Whyte, H.F.: Scalable human-robot interactions in active sensor networks. IEEE Pervasive Computing 2(4), 63–71 (2001)CrossRefGoogle Scholar
  3. 3.
    Blom, H.A.P., Hogendoorn, R.A., Doorn, B.A.V.: Design of a multisensor tracking system for advanced air traffic control. In: Bar-Shalom, Y. (ed.) Multitarget-Multisensor Tracking: Applications and Advances, vol. II, pp. 31–63. Artech House (1992)Google Scholar
  4. 4.
    Blackman, S., Pop, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999)zbMATHGoogle Scholar
  5. 5.
    Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. YBS, Storrs (1995)Google Scholar
  6. 6.
    Dana, M.P.: Registration: a prerequisite for multiple sensor tracking. In: Bar-Shalom, Y. (ed.) Multiarget-Multisensor Tracking: Advanced Applications, Artech House, Norwood (1990)Google Scholar
  7. 7.
    Leung, H., Blanchette, M., Harrison, C.: A least squares fusion of multiple radar data. In: Proc. of RADAR, pp. 364–369 (1994)Google Scholar
  8. 8.
    Zhou, Y., Leung, H., Blanchette, M.: Sensor alignment with Earth-centered Earth-fixed (ECEF) coordinate system. IEEE Trans. Aerospace and Electronic Systems 35(2), 410–418 (1999)CrossRefGoogle Scholar
  9. 9.
    Zhou, Y., Leung, H., Yip, P.C.: An exact maximum likelihood registration algorithm for data fusion. IEEE Trans. Signal Processing 45(6), 1560–1572 (1997)CrossRefGoogle Scholar
  10. 10.
    Okello, N., Ristic, B.: Maximum likelihood registration for multiple dissimilar sensors. IEEE Trans. Aerospace and Electronic Systems 39(3), 1074–1083 (2003)CrossRefGoogle Scholar
  11. 11.
    Cruz, E.D., Alouani, A., Rice, T., Blair, W.: Sensor registration in multisensor systems. In: Proceedings of SPIE, vol. 1698, pp. 382–393 (1992)Google Scholar
  12. 12.
    Zhou, Y., Leung, H., Bosse, E.: Registration of mobile sensors using the parallelized extended Kalman filter. Optical Engineering 36(3), 780–788 (1997)CrossRefGoogle Scholar
  13. 13.
    Nabaa, N., Bishop, R.H.: Solution to a multisensor tracking problem with sensor registration errors. IEEE Trans. Aerospace and Electronic Systems 35(1), 354–363 (1999)CrossRefGoogle Scholar
  14. 14.
    Tenney, R., Hebbert, R., Sandell, N.J.: A tracking filter for maneuvering sources. IEEE Trans. Automatic Control 22(2), 246–251 (1977)CrossRefGoogle Scholar
  15. 15.
    Aidala, V.J.: Kalman filter behavior in bearings-only tracking applications. IEEE Trans. Aerospace and Electronic Systems 15(1), 29–39 (1979)CrossRefGoogle Scholar
  16. 16.
    Ljung, L.: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automatic Control 24(1), 36–50 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wan, E.A., van der Merwe, R.: The unscented Kalman filter. In: Haykin, S. (ed.) Kalman filter and Neural networks, ch. 7. Wiley Publishing, Chichester (2001)Google Scholar
  18. 18.
    Li, W., Leung, H., Zhou, Y.: Space-time registration of radar and ESM using unscented Kalman filter. IEEE Trans. Aerospace and Electronic Systems 40(3), 824–836 (2004)CrossRefGoogle Scholar
  19. 19.
    Friedland, B.: Treatment of bias in recursive filtering. IEEE Trans. Automatic Control 14(4), 359–367 (1969)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhou, Y., Mickeal, J., Ford, B.: A neural network based approach for ESM/Radar track association. In: Proc. of the 7th Int. Conf. on Information Fusion, vol. 3, pp. 1238–1244 (2004)Google Scholar
  21. 21.
    Doorn, B.A.V., Blom, H.A.P.: Systematic error estimation in multisensor fusion systems. In: Proc. SPIE Symp. Signal and Data Processing of Small Targets, vol. 1954, pp. 450–461 (1993)Google Scholar
  22. 22.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statiscal Soc., Ser. B 39(1), 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Logothetis, A., Krishnamurthy, V., Holst, J.: A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter. Signal Processing 82, 473–490 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Molnar, K.J., Modestino, J.W.: Application of the EM algorithm for the multitarget/multisensor tracking problem. IEEE Trans. Signal Processing 46(1), 115–129 (1998)CrossRefGoogle Scholar
  25. 25.
    Pulford, G.W., Scala, B.F.L.: MAP estimation of target manoeuvre sequence with the expectation-maximization algorithm. IEEE Trans. Aerospace and Electronic Systems 38(2), 367–377 (2002)CrossRefGoogle Scholar
  26. 26.
    Krishnamurthy, V., Dey, S.: Reduced spatio-temporal complexity MMPP and image-based tracking filters for maneuvering targets. IEEE Trans. Aerospace and Electronic Systems 39(4), 1277–1291 (2002)CrossRefGoogle Scholar
  27. 27.
    Zia, A., Kirubarajan, T., Reilly, J.P., Yee, D., Punithakumar, K., Shirani, S.: An EM algorithm for nonlinear state estimation with model uncertainties. IEEE Trans. Signal Processing 56(3), 921–936 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Huang, D., Leung, H.: An expectation-maximization based interacting multiple model approach for cooperative driving systems. IEEE Trans. Intelligent Transportation Systems 6, 206–228 (2005)CrossRefGoogle Scholar
  29. 29.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)CrossRefGoogle Scholar
  30. 30.
    Helmick, R.E., Blair, W.D., Hoffman, S.A.: Fixed-interval smoothing for Markovian switching systems. IEEE Trans. Information Theory 41(6), 1845–1855 (1995)zbMATHCrossRefGoogle Scholar
  31. 31.
    Huang, D., Fujiyama, N., Sugimoto, S.: Blind image identification and restoration for noisy blurred images based on discrete sine transform. IEICE Trans. Information and Systems E86-D, 727–735 (2003)Google Scholar
  32. 32.
    Tichavsky, P., Muravchik, C.H., Nehorai, A.: Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Processing 46(5), 1386–1396 (1998)CrossRefGoogle Scholar
  33. 33.
    Bessell, A., Ristic, B., Farina, A., Wang, X., Arulampalam, M.S.: Error performance bounds for tracking a manoeuvring target. In: Proc. of the 6th Conf. Information Fusion, vol. 2, pp. 903–910 (2003)Google Scholar
  34. 34.
    Farina, A., Ristic, B., Timmoneri, L.: Cramér-Rao bound for nonlinear filtering with P d < 1 and its application to target tracking. IEEE Trans. Signal Processing 50(8), 1916–1924 (2002)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Ristic, B., Arulampalam, M.S.: Tracking a manoeuvring target using angle-only measurements; algorithms and performance. Signal Processing 83, 1223–1238 (2003)zbMATHCrossRefGoogle Scholar
  36. 36.
    Ristic, B., Farina, A., Hernandez, M.: Cramér-Rao lower bound for tracking multiple targets. IEE Proc.-Radar Sonar Naving 151(3), 129–134 (2004)CrossRefGoogle Scholar
  37. 37.
    Hernandez, M., Ristic, B., Farina, A., Sathyan, T., Kirubarajan, T.: Performance measure for Markovian switching systems using best-fitting Gaussian distributions. IEEE Trans. Aerospace and Electronic Systems 44(2), 724–747 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dongliang Huang
    • 1
  • Henry Leung
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations