Advertisement

Estimation of Packet Error Rate at Wireless Link of VANET

  • Hao Jiang
  • Yang Yang
  • Jun Xu
  • Lin Wang
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 64)

Abstract

Node motion and complex radio environment make packet loss estimation in VANET difficult. However, packet loss estimation impacts routing protocol and transmission control algorithm of VANET, so it is an important issue. In this chapter, we measured packet error of VANET in real urban road, and analyzed the characteristics of packet error in VANET, described packet error by a packet-level Makov (PLM) model and used GMM (Gaussian Mixture Model) to present probability density of packet error, and then proposed two methods to estimate packet error, one is based on PLM model, and another is RPEE (real-time packet error estimation) which adopts GMM of probability density of packet error in VANET.

Keywords

Medium Access Control Gaussian Mixture Model Congestion Control Medium Access Control Protocol Packet Loss Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan, L., Yu, W.: Routing in Vehicular Ad Hoc Networks: A Survey. Vehicular Technology Magazine 2(2), 12–22 (2007)CrossRefGoogle Scholar
  2. 2.
    Hartenstein, H., Laberteaux, K.P.: A Tutorial Survey on Vehicular Ad Hoc Networks. Communications Magazine 46(6), 164–171 (2008)CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Bouassida, M.S., Shawky, M.: On the Congestion Control within VANET. Wireless Days, 1–5 (November 24-27, 2008)Google Scholar
  10. 10.
    IEEE WG, IEEE 802.11p/D2.01, Draft Amendement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Wireless Access in Vehicular Environments (March 2007)Google Scholar
  11. 11.
    Choi, N., Choi, S., Seok, Y., Kwon, T., Choi, Y.: A Solicitation-based IEEE 802.11p MAC Protocol for Roadside to Vehicular Networks. Mobile Networking for Vehicular Environments, 91–96 (May 2007)Google Scholar
  12. 12.
    Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad Hoc On Demand Distance Vector (AODV) Routing, IETF Request For Comments 3561 (2003)Google Scholar
  13. 13.
    Johnson, D.B., Maltz, D.A., Hu, Y.-C.: The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR), Internet Draft: <draftietf-manetdsr-10.txt>, July 19 (2004)Google Scholar
  14. 14.
    Lochert, C., Hartenstein, H., Tian, J., Herrmann, D., Füßler, H., Mauve, M.: A Routing Strategy for Vehicular Ad Hoc Networks in City Environments. In: IEEE Intelligent Vehicles Symposium (IV 2003), Columbus, OH, USA, June 2003, vol. 1, pp. 156–16 (2003)Google Scholar
  15. 15.
    Jerbi, M., Senouci, S.-M., Meraihi, R., Ghamri-Doudane, Y.: An Improved Vehicular Ad Hoc Routing Protocol for City Environments. In: ICC 2007, June 2007, pp. 3972–3979 (2007)Google Scholar
  16. 16.
    Lochert, C., et al.: A routing strategy for vehicular ad hoc networks in city environments. In: IVS 2003, June 2003, pp. 156–161 (2003)Google Scholar
  17. 17.
    Zhang, M., Wolff, R.: Routing Protocols for Vehicular Ad Hoc Networks in Rural Areas. Communications Magazine 46(11), 126–131 (2008)CrossRefGoogle Scholar
  18. 18.
    Schmitz, R., Leiggener, A., Festag, A., Eggert, L., Effelsberg, W.: Analysis of Path Characteristics and Transport Protocol Design in Vehicular Ad Hoc Networks. In: Proc. of the 63. IEEE Semiannual Vehicular Technology Conference (VTC-Spring), pp. 528–532 (2006)Google Scholar
  19. 19.
    Sardar, B., Chand, P., Saha, D.: A novel version of Wireless TCP for Vehicular On-Board IP Networks. In: Proc. of Vehicular Technology Conference, 2006 Spring, pp. 876–880. IEEE Press, Grand Hyatt Melbourne (2006)CrossRefGoogle Scholar
  20. 20.
    Khorashadi, B., Chen, A., Ghosal, D.: Impact of Transmission Power on the Performance of UDP in Vehicular Ad Hoc Networks. In: ICC 2007, June 2007, pp. 3698–3703 (2007)Google Scholar
  21. 21.
    Chen, A., Khorashadi, B., Ghosal, D., Chuah, C.-N.: Impact of Transmission Power on TCP Performance in Vehicular Ad Hoc Networks. In: WONS 2007, January 2007, pp. 65–71 (2007)Google Scholar
  22. 22.
    Bouassida, M.S., Shawky, M.: On the Congestion Control within VANET. In: On the congestion control within VANET, WD 2008, November 2008, pp. 1–5 (2008)Google Scholar
  23. 23.
    Torrent-Moreno, M., Santi, P., Hartenstein, H.: Fair Sharing of Bandwidth in VANETs. In: Proceedings of the second ACM In-ternational Workshop on Vehicular Ad Hoc Networks (VANET), pp. 49–58 (2005)Google Scholar
  24. 24.
    Wischhof, L., Rohling, H.: Congestion control in vehicular ad hoc networks. In: Vehicular Electronics and Safety, October 2005, pp. 58–63 (2005)Google Scholar
  25. 25.
    Sofra, N., Gkelias, A., Leung, K.K.: Link Residual-Time Estimation for VANET Cross-Layer Design. In: IWCLD 2009, pp. 1–5 (2009)Google Scholar
  26. 26.
    Hsin-Mu, T., Wisitpongphan, N., Tonguz, O.K.: Link-quality aware ad hoc on-demand distance vector routing protocol. In: 1st Int. Symp. On Wireless Pervasive Computing, p. 6 (2006)Google Scholar
  27. 27.
    Chang, R., Leu, S.: Long-lived path routing with received signal strength for ad hoc networks. In: 1st International Symposium on Wireless Pervasive Computing (January 2006)Google Scholar
  28. 28.
    Kim, S.-C.: Analysis of Link Error in Reducing Broadcasting Redundancy of MANET AAPs. In: MSN 2008, December 2008, pp. 250–257 (2008)Google Scholar
  29. 29.
    Wang B.-Z; Wang Y.-P; Wang W; Lou R.-Y. Inference of Wireless Link Performance in MANET,Convergence Information Technology, 2007, Nov. 2007 Page(s):1481 – 1487. Google Scholar
  30. 30.
    Babich, F., Lombardi, G.: A Markov model for the mobile propagation channel. IEEE Trans. on Veh. Technol. 49, 63–73 (2000)CrossRefGoogle Scholar
  31. 31.
    Gilbert, E.N.: Capacity of a burst-noise channel. The Bell System Technical Journal (39), 1253–1265 (September 1960)Google Scholar
  32. 32.
    Elliott, E.O.: Estimates of Error Rates for Codes on Burst-Noise Channels. The Bell Systems Technical Journal 42, 1977–1997 (1963)Google Scholar
  33. 33.
    Fritchman, B.D.: A Binary Channel Characterization Using Partitioned Markov Chains. IEEE Trans. Information Theory 13(2), 221–227 (1967)zbMATHCrossRefGoogle Scholar
  34. 34.
    Nguyen, G.T., Noble, B.: A Trace-Based Approach for Modeling Wireless Channel Beh avior. In: Proc. the 1996 Winter Simulation Conf., pp. 597–604 (1996)Google Scholar
  35. 35.
    Chengxiang, W., Dayong, X.: A Study on Burst Error Statistics and Error Modeling for MB-OFDM UWB Systems. In: Ultra Wideband Systems, Technologies and Applications, pp. 211–248 (2006)Google Scholar
  36. 36.
  37. 37.
    Elliott, E.O.: Estimates of Error Rates for Codes on Burst-Noise Channels. The Bell Systems Technical Journal 42, 1977–1997 (1963)Google Scholar
  38. 38.
    Karner, W., Nemethova, O., Rupp, M.: Link Error Prediction in Wireless Communication Systems with Quality Based Power Control. In: Proc. IEEE Int. Conf. Comm. (ICC), Glasgow, Scotland (June 2007)Google Scholar
  39. 39.
    Karner, W., Rupp, M.: Measurement-Based Analysis and Modelling of UMTS DCH Error Characteristics for Static Scenarios. In: Proc. 8th Int. Symp. DSP and Comm. Systems (DSPCS), Sunshine Coast, Australia (December 2005)Google Scholar
  40. 40.
    Subasingha, S., Murthi, M.N., Andersen, S.V.: On GMM Kalman predictive coding of LSFS for packet loss. Acoustics, Speech and Signal Processing, 4105–4108 (2009)Google Scholar
  41. 41.
    Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[R]. ICSI TR-97-021, Department of Electrical Engineering and Computing Science, U.C. Berkeley, USA (1998)Google Scholar
  42. 42.
    Shravan, R., Arunesh, M., Dheeraj, A., Sharad, S., Suman, B.: Diagnosing Wireless Packet Losses in 802.11:Separating Collision from Weak Signal. In: Infocomm 2008 (2008)Google Scholar
  43. 43.
    Yun, J.-H., Seo, S.-W.: Collision Detection based on RE Energy Duration in IEEE 802.11 Wireless LAN. In: Comsware (2006)Google Scholar
  44. 44.
    Miu, A., Balakrishnan, H., Koksal, C.E.: Improving loss resilience with multi-radio diversity in wireless networks. In: ACM MOBICOM (2005)Google Scholar
  45. 45.
    Cheng, Y., Bellardo, J., Benkö, P., Snoeren, A., Voelker, G., Savage, S.: Jigsaw: solving the puzzle of enterprise 802.11 analysis. In: SIGCOMM 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hao Jiang
    • 1
  • Yang Yang
    • 1
  • Jun Xu
    • 1
  • Lin Wang
    • 1
  1. 1.School of Electronic InformationWuhan University 

Personalised recommendations