Skip to main content

Algorithms for Finding Optimal Flows in Dynamic Networks

  • Chapter
  • First Online:
Handbook of Power Systems II

Part of the book series: Energy Systems ((ENERGY))

Abstract

This article presents an approach for solving some power systems problems by using optimal dynamic flow problems. The classical optimal flow problems on networks are extended and generalized for the cases of nonlinear cost functions on arcs, multicommodity flows, and time- and flow-dependent transactions on arcs of the network. All parameters of networks are assumed to be dependent on time. The algorithms for solving such kind of problems are developed by using special dynamic programming techniques based on the time-expanded network method together with classical optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja R, Magnati T, Orlin J (1993) Network flows. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Aronson J (1989) A survey of dynamic network flows. Ann Oper Res 20:1–66

    Article  MATH  MathSciNet  Google Scholar 

  • Assad A (1978) Multicommodity network flows: a survey. Networks 8:37–92

    Article  MATH  MathSciNet  Google Scholar 

  • Batut J, Renaud A (1992) Daily generation scheduling optimization with transmission constraints: a new class of algorithms. IEEE Trans Power Syst 7(3):982–989

    Article  Google Scholar 

  • Bland RG, Jensen DL (1985) On the computational behavior of a polynomial-time network flow algorithm. Technical Report 661, School of Operations Research and Industrial Engineering, Cornell University

    Google Scholar 

  • Cai X, Sha D, Wong CK (2001) Time-varying minimum cost flow problems. Eur J Oper Res 131:352–374

    Article  MATH  MathSciNet  Google Scholar 

  • Carey M, Subrahmanian E (2000) An approach to modelling time-varying flows on congested networks. Transport Res B 34:157–183

    Article  Google Scholar 

  • Castro J (2000) A specialized interior-point algorithm for multicommodity network flows. Siam J Optim 10(3):852–877

    Article  MATH  MathSciNet  Google Scholar 

  • Castro J (2003) Solving difficult multicommodity problems with a specialized interior-point algorithm. Ann Oper Res 124:35–48

    Article  MATH  MathSciNet  Google Scholar 

  • Castro J, Nabona N (1996) An implementation of linear and nonlinear multicommodity network flows. Eur J Oper Res Theor Meth 92:37–53

    Article  MATH  Google Scholar 

  • Chambers A, Kerr S (1996) Power industry dictionary. PennWell Books, OK

    Google Scholar 

  • Contreras J, Losi A, Russo M, Wu FF (2002) Simulation and evaluation of optimization problem solutions in distributed energy management systems. IEEE Trans Power Syst 17(1):57–62

    Article  Google Scholar 

  • Cook D, Hicks G, Faber V, Marathe M, Srinivasan A, Sussmann Y, Thornquist H (2000) Combinatorial problems arising in deregulated electrical power industry: survey and future directions. In: Panos PM (ed) Approximation and complexity in numerical optimization: continuous and discrete problems. Kluwer, Dordrecht, pp. 138–162

    Google Scholar 

  • Denny F, Dismukes D (2002) Power system operations and electricity markets. CRC Press, FL

    Google Scholar 

  • Ermoliev I, Melnic I (1968) Extremal problems on graphs. Naukova Dumka, Kiev

    Google Scholar 

  • Feltenmark S, Lindberg PO (1997) network methods for head-dependent hydro power schedule. In: Panos MP, Donald WH, William WH (eds) Network optimization. Springer, Heidelberg, pp. 249–264

    Google Scholar 

  • Fleisher L (2000) Approximating multicommodity flow independent of the number of commodities. Siam J Discrete Math 13(4):505–520

    Article  MathSciNet  Google Scholar 

  • Fleischer L (2001a) Universally maximum flow with piecewise-constant capacities. Networks 38(3):115–125

    Article  MATH  MathSciNet  Google Scholar 

  • Fleischer L (2001b) Faster algorithms for the quickest transshipment problem. Siam J Optim 12(1):18–35

    Article  MATH  MathSciNet  Google Scholar 

  • Fleisher L, Skutella M (2002) The quickest multicommodity flow problem. Integer programming and combinatorial optimization. Springer, Berlin, pp. 36–53

    Google Scholar 

  • Fonoberova M, Lozovanu D (2007) Minimum cost multicommodity flows in dynamic networks and algorithms for their finding. Bull Acad Sci Moldova Math 1(53):107–119

    MathSciNet  Google Scholar 

  • Ford L, Fulkerson D (1958) Constructing maximal dynamic flows from static flows. Oper Res 6:419–433

    Article  MathSciNet  Google Scholar 

  • Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Glockner G, Nemhauser G (2002) A dynamic network flow problem with uncertain arc capacities: formulation and problem structure. Oper Res 48(2):233–242

    Article  MathSciNet  Google Scholar 

  • Goldberg AV, Tarjan RE (1987a) Solving minimum-cost flow problems by successive approximation. Proc. 19th ACM STOC, pp. 7–18

    Google Scholar 

  • Goldberg AV, Tarjan RE (1987b) Finding minimum-cost circulations by canceling negative cycles. Technical Report CS-TR 107-87, Department of Computer Science, Princeton University

    Google Scholar 

  • Hoppe B, Tardos E (2000) The quickest transshipment problem. Math Oper Res 25:36–62

    Article  MATH  MathSciNet  Google Scholar 

  • Hu T (1970) Integer programming and network flows. Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  • Kersting W (2006) Distribution system modeling and analysis, 2nd edn. CRC, FL

    Google Scholar 

  • Kim BH, Baldick R (1997) Coarse-grained distributed optimal power flow. IEEE Trans Power Syst 12(2):932–939

    Article  Google Scholar 

  • Klinz B, Woeginger C (1995) Minimum cost dynamic flows: the series parallel case. Integer programming and combinatorial optimization. Springer, Berlin, pp. 329–343

    Google Scholar 

  • Klinz B, Woeginger C (1998) One, two, three, many, or: complexity aspects of dynamic network flows with dedicated arcs. Oper Res Lett 22:119–127

    Article  MATH  MathSciNet  Google Scholar 

  • Lozovanu D, Fonoberova M (2006) Optimal flows in dynamic networks, Chisinau, CEP USM

    MATH  Google Scholar 

  • Lozovanu D, Stratila D (2001) The minimum-cost flow problem on dynamic networks and algorithm for its solving. Bull Acad Sci Moldova Math 3:38–56

    MathSciNet  Google Scholar 

  • Ma Z, Cui D, Cheng P (2004) Dynamic network flow model for short-term air traffic flow management. IEEE Trans Syst Man Cybern A Syst Hum 34(3):351–358

    Article  Google Scholar 

  • McBride R (1998) Progress made in solving the multicommodity flow problems. Siam J Optim 8(4):947–955

    Article  MATH  MathSciNet  Google Scholar 

  • McDonald JR, McArthur S, Burt G, Zielinski J (eds) (1997) Intelligent knowledge based systems in electrical power, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Pansini A (2005) Guide to electrical power distribution systems, 6th edn. CRC, FL

    Google Scholar 

  • Papadimitrou C, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Pardalos PM, Guisewite G (1991) Global search algorithms for minimum concave cost network flow problem. J Global Optim 1(4):309–330

    Article  MATH  MathSciNet  Google Scholar 

  • Powell W, Jaillet P, Odoni A (1995) Stochastic and dynamic networks and routing. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Network routing, vol. 8 of Handbooks in operations research and management science, chapter 3. North Holland, Amsterdam, The Netherlands, pp. 141–295

    Google Scholar 

  • Rajan GG (2006) Practical energy efficiency optimization. PennWell Books. OK

    Google Scholar 

  • Short T (2003) Electric power distribution handbook, 1st edn. CRC, FL

    Google Scholar 

  • Weber C (2005) Uncertainty in the electric power industry: methods and models for decision support. Springer, Heidelberg

    MATH  Google Scholar 

  • Weber C, Marechala F, Favrata D (2007) Design and optimization of district energy systems. In: Plesu V, Agachi PS (eds) 17th European Symposium on Computer Aided Process Engineering – ESCAPE17, Elsevier, Amsterdam

    Google Scholar 

  • Willis HL (2004) Power distribution planning reference book. CRC Press, FL

    Google Scholar 

  • Willis HL, Welch G, Schrieber R (2000) Aging power delivery infrastructures. CRC Press, FL

    Google Scholar 

  • Wood A, Wollenberg B (1996) Power generation, operation and control. Wiley, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fonoberova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fonoberova, M. (2010). Algorithms for Finding Optimal Flows in Dynamic Networks. In: Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds) Handbook of Power Systems II. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12686-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12686-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12685-7

  • Online ISBN: 978-3-642-12686-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics