Skip to main content

Recent Developments in Optimal Power Flow Modeling Techniques

  • Chapter
  • First Online:
Handbook of Power Systems II

Part of the book series: Energy Systems ((ENERGY))

Abstract

This article discusses recent advances in mathematical modeling techniques of transmission networks and control devices within the scope of optimal power flow (OPF) implementations. Emphasis is on the newly proposed concept of representing meshed power networks using an extended conic quadratic (ECQ) model and its amenability to solution by using interior-point codes. Modeling of both classical power control devices and modern unified power flow controller (UPFC) technology is described in relation to the ECQ network format. Applications of OPF including economic dispatching, loss minimization, constrained power flow solutions, and transfer capability computation are presented. Numerical examples that can serve as testing benchmarks for future software developments are reported on a sample test network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acha E, Fuerte-Esquivel CR, Ambriz-Pérez H, Angeles-Camacho C (2004) FACTS: modeling and simulation in power networks. Wiley, Chichester

    Book  Google Scholar 

  • Ajjarapu V, Christy C (1992) The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans Power Syst 7(1):416–423

    Article  Google Scholar 

  • Alsac O, Bright J, Prais M, Stott B (1990) Further developments in LP-based optimal power flow. IEEE Trans Power Syst 5(3):697–711

    Article  Google Scholar 

  • Alsac O, Stott B (1974) Optimal load flow with steady-state security. IEEE Trans Power App Syst 93(3):745–751

    Article  Google Scholar 

  • Ambriz-Pérez H, Acha E, Fuerte-Esquivel CR, De la Torre A (1998) Incorporation of a UPFC model in an optimal power flow using Newton’s method. IEE Proc- Gener Transm Distrib 145(3):336–344

    Article  Google Scholar 

  • Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  • Belegundu AD, Chandrupatla TR (1999) Optimization concepts and applications in engineering. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • British Electricity International (1991) Modern power station practice, vol. L: system operation. Pergamon, Oxford

    Google Scholar 

  • Burchett RC, Happ HH, Vierath DR (1984) Quadratically convergent optimal power flow. IEEE Trans Power App Syst 103(11):3267–3275

    Article  Google Scholar 

  • Cañizares CA, Alvarado FL (1993) Point of collapse and continuation methods for large AC/DC systems. IEEE Trans Power Syst 8(1):1–8

    Article  Google Scholar 

  • Capitanescu F, Glavic M, Ernst D, Wehenkel L (2007) Interior-point based algorithms for the solution of optimal power flow problems. Elec Power Syst Res 77(5–6):508–517

    Article  Google Scholar 

  • Carpentier J (1962) Contribution a l’étude du dispatching économique. Ser. 8: Bulletin de la Société Française des Electriciens 3:431–447

    Google Scholar 

  • Chebbo AM, Irving MR (1995) Combined active and reactive dispatch - part 1: problem formulation and solution algorithms. IEE Proc- Gener Transm Distrib 142(4):393–400

    Article  Google Scholar 

  • Dai Y, McCalley JD, Vittal V (2000) Simplification, expansion and enhancement of direct interior point algorithm for power system maximum loadability. IEEE Trans Power Syst 15(3): 1014–1021

    Article  Google Scholar 

  • Debs AS (1988) Modern power systems control and operation. Kluwer, Boston

    Google Scholar 

  • Ejebe GC, Waight JG, Santos-Nieto M, Tinney WF (2000) Fast calculation of linear available transfer capability. IEEE Trans Power Syst 15(3):1112–1116

    Article  Google Scholar 

  • Freris LL, Sasson AM (1968) Investigation of the load-flow problem. IEE Proc 115(10):1459–1470

    Google Scholar 

  • Fuerte-Esquivel CR, Acha E (1997) Unified power flow controller: a critical comparison of Newton-Raphson UPFC algorithms in power flow studies. IEE Proc- Gener Transm Distrib 144(5):437–444

    Article  Google Scholar 

  • Fuerte-Esquivel CR, Acha E, Ambriz-Pérez H (2000) A comprehensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Trans Power Syst 15(1):102–109

    Article  Google Scholar 

  • Gao B, Morison GK, Kundur P (1996) Towards the development of a systematic approach for voltage stability assessment of large-scale power systems. IEEE Trans Power Syst 11(3): 1314–1324

    Article  Google Scholar 

  • Grainger JJ, Stevenson WD Jr (1994) Power system analysis. McGraw-Hill, New York

    Google Scholar 

  • Granville S (1994) Optimal reactive dispatch through interior-point methods. IEEE Trans Power Syst 9(1):136–146

    Article  Google Scholar 

  • Gyugyi L (1992) Unified power-flow control concept for flexible AC transmission systems. IEE Proc- Gener Transm Distrib 139(4):323–331

    Article  Google Scholar 

  • Hamoud, G (2000) Assessment of available transfer capability of transmission systems. IEEE Trans Power Syst 15(1):27–32

    Article  Google Scholar 

  • Handschin E, Lehmköster C (1999) Optimal power flow for deregulated systems with FACTS devices. Proc 13th PSCC 2:1270–1276

    Google Scholar 

  • Irisarri GD, Wang X, Tong J, Mokhtari S (1997) Maximum loadability of power systems using interior point non-linear optimization method. IEEE Trans Power Syst 12(1):162–172

    Article  Google Scholar 

  • Jabr RA (2003) A primal-dual interior-point method to solve the optimal power flow dispatching problem. Optim Eng 4(4):309–336

    Article  MATH  MathSciNet  Google Scholar 

  • Jabr RA (2005) Primal-dual interior-point approach to compute the L 1 solution of the state estimation problem. IEE Proc- Gener Transm Distrib 152(3):313–320

    Article  Google Scholar 

  • Jabr RA (2007) A conic quadratic format for the load flow equations of meshed networks. IEEE Trans Power Syst 22(4):2285–2286

    Article  Google Scholar 

  • Jabr RA (2008) Optimal power flow using an extended conic quadratic formulation. IEEE Trans Power Syst 23(3):1000–1008

    Article  Google Scholar 

  • Jabr RA, Pal BC (2008) AC network state estimation using linear measurement functions. IET Gener Transm Distrib 2(1):1–6

    Article  Google Scholar 

  • Lai LL, Sinha N (2008) Genetic algorithms for solving optimal power flow problems. In Lee KY, El-Sharkawi MA (ed) Modern heuristic optimization techniques: theory and applications to power systems. Wiley, New Jersey

    Google Scholar 

  • Lehmköster C (2002) Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Trans Power Deliv 17(2):603–608

    Article  Google Scholar 

  • Lin SY, Ho YC, Lin CH (2004) An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables. IEEE Trans Power Syst 19(1): 276–286

    Article  Google Scholar 

  • Min W, Shengsong L (2005) A trust region interior point algorithm for optimal power flow problems. Elec Power Energy Syst 27(4):293–300

    Article  Google Scholar 

  • North American Electric Reliability Council (1995) Transmission transfer capability. Available ftp://ftp.nerc.com/pub/sys/all_updl/docs/pubs/TransmissionTransferCapability_May1995.pdf

  • Rider MJ, Paucar VL, Garcia AV (2004) Enhanced higher-order interior-point method to minimise active power losses in electric energy systems. IEE Proc- Gener Transm Distrib 151(4):517–525

    Article  Google Scholar 

  • Ruíz Muñoz JM, Gómez Expósito A (1992) A line-current measurement based state estimator. IEEE Trans Power Syst 7(2):513–519

    Article  Google Scholar 

  • Saadat H (1999) Power system analysis. McGraw-Hill, Singapore

    Google Scholar 

  • Salgado R, Brameller A, Aitchison P (1990) Optimal power flow solutions using the projection method - part 1: theoretical basis. IEE Proc- Gener Transm Distrib 137(6):424–428

    Article  Google Scholar 

  • Sterling, MJH (1978) Power system control. Peregrinus for the IEE, Stevenage

    Google Scholar 

  • Sun DI, Ashley B, Brewer B, Hughes A, Tinney WF (1984) Optimal power flow by Newton approach. IEEE Trans Power App Syst 103(10):2864–2880

    Article  Google Scholar 

  • Torres GL, Quintana VH (1998) An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans Power Syst 13(4):1211–1218

    Article  Google Scholar 

  • Torres GL, Quintana VH (2001) On a nonlinear multiple-centrality-corrections interior-point method for optimal power flow. IEEE Trans Power Syst 16(2):222–228

    Article  Google Scholar 

  • Tosovic LB (1973) Some experiments on sparse sets of linear equations. SIAM J App Math 25(2):142–148

    Article  MATH  MathSciNet  Google Scholar 

  • Wang H, Murillo-Sánchez CE, Zimmerman RD, Thomas RJ (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193

    Article  Google Scholar 

  • Wei H, Sasaki H, Kubokawa J, Yokoyama R (1998) An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans Power Syst 13(3): 870–877

    Article  Google Scholar 

  • Wood AJ, Wollenberg BF (1996) Power generation, operation, and control. Wiley, New York

    Google Scholar 

  • Wright SJ (1997) Primal dual interior point methods. SIAM, Philadelphia

    MATH  Google Scholar 

  • Wu YC, Debs AS, Marsten RE (1994) A direct nonlinear predictor-corrector primal-dual interior-point algorithm for optimal power flows. IEEE Trans Power Syst 9(2):876–883

    Article  Google Scholar 

  • Xiao Y, Song YH, Liu CC, Sun YZ (2003) Available transfer capability enhancement using FACTS devices. IEEE Trans Power Syst 18(1):305–312

    Article  Google Scholar 

  • Xiao Y, Song YH, Sun YZ (2002) Power flow control approach to power systems with embedded FACTS devices. IEEE Trans Power Syst 17(4):943–950

    Article  Google Scholar 

  • Zhang XP (2005) Transfer capability computation with security constraints. Proc 15th PSCC, Available http://www.montefiore.ulg.ac.be/services/stochastic/pscc05/papers/fp434.pdf

  • Zhang XP, Handschin E (2001) Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc- Gener Transm Distrib 148(5):489–496

    Article  Google Scholar 

  • Zhang XP, Handschin E (2002) Transfer capability computation of power systems with comprehensive modeling of FACTS controllers. Proc 14th PSCC, Available http://www.pscc02.org/papers/s30p02.pdf

  • Zhang XP, Petoussis SG, Godfrey KR (2005) Nonlinear interior-point optimal power flow method based on a current mismatch formulation. IEE Proc- Gener Transm Distrib 152(6):795–805

    Article  Google Scholar 

  • Zhang XP, Rehtanz C, Pal B (2006) Flexible AC transmission systems – modelling and control. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabih A. Jabr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jabr, R.A. (2010). Recent Developments in Optimal Power Flow Modeling Techniques. In: Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds) Handbook of Power Systems II. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12686-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12686-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12685-7

  • Online ISBN: 978-3-642-12686-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics