Hierarchical Generative Biclustering for MicroRNA Expression Analysis

  • José Caldas
  • Samuel Kaski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)


Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model’s added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.


Biclustering graphical model information retrieval nested Chinese restaurant process miRNA melanoma non-Hodgkin lymphoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome-Wide Expression Patterns. P. Natl. Acad. Sci. U.S.A. 95, 14863–14868 (1998)CrossRefGoogle Scholar
  2. 2.
    Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)CrossRefGoogle Scholar
  3. 3.
    Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Flaherty, P., et al.: A Latent Variable Model for Chemogenomic Profiling. Bioinformatics 21, 3286–3293 (2005)CrossRefGoogle Scholar
  5. 5.
    Gerber, G.K., et al.: Automated Discovery of Functional Generality of Human Gene Expression Programs. PLoS Comput. Biol. 3, 1426–1440 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lu, J., et al.: MicroRNA Expression Profiles Classify Human Cancers. Nature 435, 834–838 (2005)CrossRefGoogle Scholar
  7. 7.
    Blei, D.M., Griffiths, T.L., Jordan, M.I.: The Nested Chinese Restaurant Process and Bayesian Inference of Topic Hierarchies. J. ACM (to appear)Google Scholar
  8. 8.
    Aldous, D.: Exchangeability and Related Topics. In: École d’été de probabilités de Saint-Flour, XIII, pp. 1–198. Springer, Berlin (1985)Google Scholar
  9. 9.
    Miller, K.T., Griffiths, T.L., Jordan, M.I.: The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features. In: McAllester, D., Myllymaki, P. (eds.) Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pp. 403–410. AUAI Press, Corvallis (2008)Google Scholar
  10. 10.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  11. 11.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton (1996)zbMATHGoogle Scholar
  12. 12.
    Liu, J.S.: The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem. J. Am. Stat. Assoc. 89, 958–966 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Escobar, M.D., West, M.: Bayesian Density Estimation and Inference Using Mixtures. J. Am. Stat. Assoc. 90, 577–588 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet Processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Antoniak, C.E.: Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems. Ann. Stat. 2, 1152–1174 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Buntine, W., et al.: A Scalable Topic-Based Open Source Search Engine. In: Zhong, N., et al. (eds.) Proceedings of the IEEE/WIC/ACM Conference on Web Intelligence, pp. 228–234. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  17. 17.
    Tanay, A., Sharan, R., Shamir, R.: Discovering Statistically Significant Biclusters in Gene Expression Data. Bioinformatics 18, S136–S144 (2002)Google Scholar
  18. 18.
    Lazzeroni, L., Owen, A.: Plaid Models for Gene Expression Data. Stat. Sinica 12, 61–86 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: Bourne, P., et al. (eds.) Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press, Menlo Park (2000)Google Scholar
  20. 20.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. In: Istrail, S., Waterman, M.S., Clark, A.G. (eds.) Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 49–57. ACM, New York (2002)Google Scholar
  21. 21.
    Landgraf, P., et al.: A Mammalian MicroRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 129, 1401–1414 (2007)CrossRefGoogle Scholar
  22. 22.
    Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P., Hatzigeorgiou, A.G.: The Database of Experimentally Supported Targets: A Functional Update of TarBase. Nucleic Acids Res. 37, D155–D158 (2008)Google Scholar
  23. 23.
    Ashburner, M., et al.: Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25, 25–29 (2000)CrossRefGoogle Scholar
  24. 24.
    Caldas, J., et al.: Probabilistic Retrieval and Visualization of Biologically Relevant Microarray Experiments. Bioinformatics 25, i145–i153 (2009)Google Scholar
  25. 25.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  26. 26.
    Lens, M.B., Newton-Bishop, J.A.: An Association Between Cutaneous Melanoma and Non-Hodgkin’s Lymphoma: Pooled Analysis of Published Data with a Review. Ann. Oncol. 16, 460–465 (2004)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Lee, C.G.L.: MicroRNA and Cancer: Focus on Apoptosis. J. Cell. Mol. Med. 13, 12–23 (2009)CrossRefGoogle Scholar
  28. 28.
    Su, D.M., et al.: Two Types of Human Malignant Melanoma Cell Lines Revealed by Expression Patterns of Mitochondrial and Survival-Apoptosis Genes: Implications for Malignant Melanoma Therapy. Mol. Cancer Ther. 8, 1292–1304 (2009)CrossRefGoogle Scholar
  29. 29.
    Kertesz, M., et al.: The Role of Site Accessibility in MicroRNA Target Recognition. Nat. Genet. 39, 1278–1284 (2007)CrossRefGoogle Scholar
  30. 30.
    Wang, Y., et al.: Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target. J. Biol. Chem. 283, 13205–13215 (2008)CrossRefGoogle Scholar
  31. 31.
    Van den Berghe, L., et al.: FIF [Fibroblast Growth Factor-2 (FGF-2)-Interacting-Factor], a Nuclear Putatively Antiapoptotic Factor, Interacts Specifically with FGF-2. Mol. Endochrinol. 14, 1709–1724 (2000)CrossRefGoogle Scholar
  32. 32.
    Krejci, P., et al.: FGF-2 Expression and its Action in Human Leukemia and Lymphoma Cell Lines. Leukemia 17, 817–819 (2002)Google Scholar
  33. 33.
    Mees, S.T., et al.: Involvement of CD40 Targeting Mir-224 and Mir-486 on the Progression of Pancreatic Ductal Adenocarcinomas. Ann. Surg. Oncol. 16, 2339–2350 (2009)CrossRefGoogle Scholar
  34. 34.
    French, R.R., et al.: CD40 Antibody Evokes a Cytotoxic T-Cell Response that Eradicates Lymphoma and Bypasses T-Cell Help. Nat. Med. 5, 548–553 (1999)CrossRefGoogle Scholar
  35. 35.
    Pirozzi, G., et al.: CD40 Expressed on Human Melanoma Cells Mediates T Cell Co-Stimulation and Tumor Cell Growth. Int. Immunol. 12, 787–795 (2000)CrossRefGoogle Scholar
  36. 36.
    Rigou, P., et al.: The Antiapoptotic Protein AAC-11 Interacts with and Regulates Acinus-Mediated DNA Fragmentation. EMBO J. 28, 1576–1588 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • José Caldas
    • 1
  • Samuel Kaski
    • 1
  1. 1.Department of Information and Computer Science, Helsinki Institute for Information TechnologyAalto University School of Science and TechnologyAaltoFinland

Personalised recommendations