Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding

  • Raheleh Salari
  • Mathias Möhl
  • Sebastian Will
  • S. Cenk Sahinalp
  • Rolf Backofen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)


In the past years, a large set of new regulatory ncRNAs have been identified, but the number of experimentally verified targets is considerably low. Thus, computational target prediction methods are on high demand. Whereas all previous approaches for predicting a general joint structure have a complexity of O(n 6) running time and O(n 4) space, a more time and space efficient interaction prediction that is able to handle complex joint structures is necessary for genome-wide target prediction problems. In this paper we show how to reduce both the time and space complexity of the RNA-RNA interaction prediction problem as described by Alkan et al. [1] via dynamic programming sparsification - which allows to discard large portions of DP tables without loosing optimality. Applying sparsification techniques reduces the complexity of the original algorithm from O(n 6) time and O(n 4) space to O(n 4 ψ(n)) time and O(n 2 ψ(n) + n 3) space for some function ψ(n), which turns out to have small values for the range of n that we encounter in practice. Under the assumption that the polymer-zeta property holds for RNA-structures, we demonstrate that ψ(n) = O(n) on average, resulting in a linear time and space complexity improvement over the original algorithm. We evaluate our sparsified algorithm for RNA-RNA interaction prediction by total free energy minimization, based on the energy model of Chitsaz et al.[2], on a set of known interactions. Our results confirm the significant reduction of time and space requirements in practice.


Candidate List Joint Structure Interaction Prediction Base Pairing Probability Nucleic Acid Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology (Special RECOMB 2005 Issue) 13(2), 267–282 (2006)MathSciNetGoogle Scholar
  2. 2.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics (Special ISMB/ECCB 2009 Issue) 25(12), i365–i373 (2009)Google Scholar
  3. 3.
    Storz, G.: An expanding universe of noncoding RNAs. Science 296(5571), 1260–1263 (2002)CrossRefGoogle Scholar
  4. 4.
    Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)CrossRefGoogle Scholar
  5. 5.
    Hannon, G.J.: RNA interference. Nature 418(6894), 244–251 (2002)CrossRefGoogle Scholar
  6. 6.
    Zamore, P.D., Haley, B.: Ribo-gnome: the big world of small RNAs. Science 309(5740), 1519–1524 (2005)CrossRefGoogle Scholar
  7. 7.
    Wagner, E., Flardh, K.: Antisense RNAs everywhere?. Trends Genet. 18, 223–226 (2002)CrossRefGoogle Scholar
  8. 8.
    Brantl, S.: Antisense-RNA regulation and RNA interference. Bioch. Biophys. Acta 1575(1-3), 15–25 (2002)Google Scholar
  9. 9.
    Gottesman, S.: Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics 21(7), 399–404 (2005)CrossRefGoogle Scholar
  10. 10.
    Seeman, N.: From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005)CrossRefGoogle Scholar
  11. 11.
    Seeman, N.C., Lukeman, P.S.: Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports on Progress in Physics 68, 237–270 (2005)CrossRefGoogle Scholar
  12. 12.
    Simmel, F., Dittmer, W.: DNA nanodevices. Small 1, 284–299 (2005)CrossRefGoogle Scholar
  13. 13.
    Venkataraman, S., Dirks, R., Rothemund, P., Winfree, E., Pierce, N.: An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2, 490–494 (2007)CrossRefGoogle Scholar
  14. 14.
    Yin, P., Hariadi, R., Sahu, S., Choi, H., Park, S., Labean, T., Reif, J.: Programming DNA tube circumferences. Science 321, 824–826 (2008)CrossRefGoogle Scholar
  15. 15.
    Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. 15(2), 92–101 (2004)MathSciNetGoogle Scholar
  16. 16.
    Huang, F.W., Qin, J., Reidys, C.M., Stadler, P.F.: Partition Function and Base Pairing Probabilities for RNA-RNA Interaction Prediction. Bioinformatics 25(20), 2646–2654 (2009)Google Scholar
  17. 17.
    David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones, T., Davis, R.W., Steinmetz, L.M.: A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. U.S.A. 103(14), 5320–5325 (2006)CrossRefGoogle Scholar
  18. 18.
    Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. Journal of Computational Biology (Special RECOMB 2006 Issue) 14(6), 856–872 (2007)Google Scholar
  19. 19.
    Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 249–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Rehmsmeier, M., Steffen, P., Höchsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)CrossRefGoogle Scholar
  23. 23.
    Tjaden, B., Goodwin, S.S., Opdyke, J.A., Guillier, M., Fu, D.X., Gottesman, S., Storz, G.: Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Research 34(9), 2791–2802 (2006)CrossRefGoogle Scholar
  24. 24.
    Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. Journal of Molecular Biology 345(5), 987–1001 (2005)CrossRefGoogle Scholar
  25. 25.
    Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Hofacker, I.L.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1(1), 3 (2006)CrossRefGoogle Scholar
  26. 26.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Review 49(1), 65–88 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Zuker, M.: Prediction of RNA secondary structure by energy minimization. Methods in Molecular Biology 25, 267–294 (1994)Google Scholar
  28. 28.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125, 167–188 (1994)CrossRefGoogle Scholar
  29. 29.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)CrossRefGoogle Scholar
  30. 30.
    Busch, A., Richter, A.S., Backofen, R.: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24), 2849–2856 (2008)CrossRefGoogle Scholar
  31. 31.
    Argaman, L., Altuvia, S.: fhla repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. Journal of Molecular Biology 300(5), 1101–1112 (2000)CrossRefGoogle Scholar
  32. 32.
    Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 261–272. Springer, Heidelberg (2009); Also Algorithms for Molecular Biology (in press)CrossRefGoogle Scholar
  33. 33.
    Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Fisher, M.E.: Shape of a self-avoiding walk or polymer chain. Journal of Chemical Physics 44, 616–622 (1966)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Kafri, Y., Mukamel, D., Peliti, L.: Why is the DNA denaturation transition first order? Phys. Rev. Lett. 85, 4988–4991 (2000)CrossRefGoogle Scholar
  37. 37.
    Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to rna-rna interaction prediction. Pattern Recogn. 42(4), 531–538 (2009)zbMATHCrossRefGoogle Scholar
  38. 38.
    Wu, T., Wang, J., Liu, C., Zhang, Y., Shi, B., Zhu, X., Zhang, Z., Skogerb, G., Chen, L., Lu, H., Zhao, Y., Chen, R.: NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res. 34, D150–D152 (2006)Google Scholar
  39. 39.
    Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic Acids Research 36(Database issue), D25–D30 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raheleh Salari
    • 1
  • Mathias Möhl
    • 2
  • Sebastian Will
    • 2
  • S. Cenk Sahinalp
    • 1
  • Rolf Backofen
    • 2
  1. 1.Lab for Computational Biology, School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Bioinformatics, Institute of Computer ScienceAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations