Admixture Aberration Analysis: Application to Mapping in Admixed Population Using Pooled DNA

  • Sivan Bercovici
  • Dan Geiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)

Abstract

Admixture mapping is a gene mapping approach used for the identification of genomic regions harboring disease susceptibility genes in the case of recently admixed populations such as African Americans. We present a novel method for admixture mapping, called admixture aberration analysis (AAA), that uses a DNA pool of affected admixed individuals. We demonstrate through simulations that AAA is a powerful and economical mapping method under a range of scenarios, capturing complex human diseases such as hypertension and end stage kidney disease. The method has a low false-positive rate and is robust to deviation from model assumptions. Finally, we apply AAA on 600 prostate cancer-affected African Americans, replicating a known risk locus. Simulation results indicate that the method can yield over 96% reduction in genotyping. Our method is implemented as a Java program called AAAmap and is freely available.

Keywords

Prostate Cancer Disease Locus Ancestral Population Admix Population Admixture Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661–678 (2007)Google Scholar
  2. 2.
    Smith, M.W., O’Brien, S.J.: Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat. Rev. Genet. 6(8), 623–632 (2005)CrossRefGoogle Scholar
  3. 3.
    Freedman, M.L., Haiman, C.A., Patterson, N., McDonald, G.J., Tandon, A., Waliszewska, A., Penney, K., Steen, R.G., Ardlie, K., John, E.M., Oakley-Girvan, I., Whittemore, A.S., Cooney, K.A., Ingles, S.A., Altshuler, D., Henderson, B.E., Reich, D.: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proceedings of the National Academy of Sciences 103(38), 14068–14073 (2006)CrossRefGoogle Scholar
  4. 4.
    Haiman, C.A., Patterson, N., Freedman, M.L., Myers, S.R., Pike, M.C., Waliszewska, A., Neubauer, J., Tandon, A., Schirmer, C., Mcdonald, G.J., Greenway, S.C., Stram, D.O., Le Marchand, L., Kolonel, L.N., Frasco, M., Wong, D., Pooler, L.C., Ardlie, K., Girvan, O.I., Whittemore, A.S., Cooney, K.A., John, E.M., Ingles, S.A., Altshuler, D., Henderson, B.E., Reich, D.: Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39(5), 638–644 (2007)CrossRefGoogle Scholar
  5. 5.
    Kao, W.H.L., Klag, M.J., Meoni, L.A., Reich, D., Berthier-Schaad, Y., Li, M., Coresh, J., Patterson, N., Tandon, A., Powe, N.R., Fink, N.E., Sadler, J.H., Weir, M.R., Abboud, H.E., Adler, S.G., Divers, J., Iyengar, S.K., Freedman, B.I., Kimmel, P.L., Knowler, W.C., Kohn, O.F., Kramp, K., Leehey, D.J., Nicholas, S.B., Pahl, M.V., Schelling, J.R., Sedor, J.R., Thornley-Brown, D., Winkler, C.A., Smith, M.W., Parekh, R.S.: Myh9 is associated with nondiabetic end-stage renal disease in african americans. Nat. Genet. 40(10), 1185–1192 (2008)CrossRefGoogle Scholar
  6. 6.
    Smith, M.W., Patterson, N., Lautenberger, J.A., Truelove, A.L., McDonald, G.J., Waliszewska, A., Kessing, B.D., Malasky, M.J., Scafe, C., Le, E., De Jager, P.L., Mignault, A.A., Yi, Z., de Thé, G., Essex, M., Sankalé, J.L., Moore, J.H., Poku, K., Phair, J.P., Goedert, J.J., Vlahov, D., Williams, S.M., Tishkoff, S.A., Winkler, C.A., De La Vega, F.M., Woodage, T., Sninsky, J.J., Hafler, D.A., Altshuler, D., Gilbert, D.A., OBrien, S.J., Reich, D.: A high-density admixture map for disease gene discovery in african americans 74(5), 1001–1013 (May 2004)Google Scholar
  7. 7.
    Bercovici, S., Geiger, D., Shlush, L., Skorecki, K., Templeton, A.: Panel construction for mapping in admixed populations via expected mutual information. Genome Res. 18(4), 661–667 (2008)CrossRefGoogle Scholar
  8. 8.
    Reich, D., Patterson, N.: Will admixture mapping work to find disease genes? Philosophical Transactions of the Royal Society B: Biological Sciences 360(1460), 1605–1607 (2005)CrossRefGoogle Scholar
  9. 9.
    Patterson, N., Hattangadi, N., Lane, B., Lohmueller, K.E., Hafler, D.A., Oksenberg, J.R., Hauser, S.L., Smith, M.W., OBrien, S.J., Altshuler, D., Daly, M.J., Reich, D.: Methods for high-density admixture mapping of disease genes 74(5), 979–1000 (May 2004)Google Scholar
  10. 10.
    Tang, H., Coram, M., Wang, P., Zhu, X., Risch, N.: Reconstructing genetic ancestry blocks in admixed individuals (July 2006)Google Scholar
  11. 11.
    Bercovici, S., Geiger, D.: Inferring ancestries efficiently in admixed populations with linkage disequilibrium. Journal of Computational Biology 16(8), 1141–1150 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chakraborty, R., Weiss, K.M.: Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proceedings of the National Academy of Sciences of the United States of America 85(23), 9119–9123 (1988)CrossRefGoogle Scholar
  13. 13.
    Sham, P., Bader, J.S., Craig, I., O’Donovan, M., Owen, M.: Dna pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3(11), 862–871 (2002)CrossRefGoogle Scholar
  14. 14.
    Arnheim, N., Strange, C., Erlich, H.: Use of pooled dna samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: Studies of the hla class ii loci. Proc. Natl. Acad. Sci. 82(20), 6970–6974 (1985)CrossRefGoogle Scholar
  15. 15.
    Steer, S., Abkevich, V., Gutin, A., Cordell, H.J., Gendall, K.L., Merriman, M.E., Rodger, R.A., Rowley, K.A., Chapman, P., Gow, P., Harrison, A.A., Highton, J., Jones, P.B.B., O’Donnell, J., Stamp, L., Fitzgerald, L., Iliev, D., Kouzmine, A., Tran, T., Skolnick, M.H., Timms, K.M., Lanchbury, J.S., Merriman, T.R.: Genomic dna pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes Immun. 8(1), 57–68 (2006)CrossRefGoogle Scholar
  16. 16.
    Zeng, D., Lin, D.Y.: Estimating haplotype-disease associations with pooled genotype data. Genetic epidemiology 28(1), 70–82 (2005)CrossRefGoogle Scholar
  17. 17.
    Kirov, G., Nikolov, I., Georgieva, L., Moskvina, V., Owen, M.J., O’donovan, M.C.: Pooled dna genotyping on affymetrix snp genotyping arrays. BMC Genomics 7(1) (February 2006)Google Scholar
  18. 18.
    Wilkening, S., Chen, B., Wirtenberger, M., Burwinkel, B., Forsti, A., Hemminki, K., Canzian, F.: Allelotyping of pooled dna with 250k snp microarrays. BMC Genomics 8, 77 (2007)CrossRefGoogle Scholar
  19. 19.
    Darvasi, A., Soller, M.: Selective DNA Pooling for Determination of Linkage Between a Molecular Marker and a Quantitative Trait Locus. Genetics 138(4), 1365–1373 (1994)Google Scholar
  20. 20.
    Amundadottir, L.T., Sulem, P., Gudmundsson, J., Helgason, A., Baker, A., Agnarsson, B.A., Sigurdsson, A., Benediktsdottir, K.R., Cazier, J.B., Sainz, J., Jakobsdottir, M., Kostic, J., Magnusdottir, D.N., Ghosh, S., Agnarsson, K., Birgisdottir, B., Le Roux, L., Olafsdottir, A., Blondal, T., Andresdottir, M., Gretarsdottir, O.S., Bergthorsson, J.T., Gudbjartsson, D., Gylfason, A., Thorleifsson, G., Manolescu, A., Kristjansson, K., Geirsson, G., Isaksson, H., Douglas, J., Johansson, J.E., Bälter, K., Wiklund, F., Montie, J.E., Yu, X., Suarez, B.K., Ober, C., Cooney, K.A., Gronberg, H., Catalona, W.J., Einarsson, G.V., Barkardottir, R.B., Gulcher, J.R., Kong, A., Thorsteinsdottir, U., Stefansson, K.: A common variant associated with prostate cancer in european and african populations. Nature Genetics 38(6), 652–658 (2006)CrossRefGoogle Scholar
  21. 21.
    Long, J.C.: The Genetic Structure of Admixed Populations. Genetics 127(2), 417–428 (1991)Google Scholar
  22. 22.
    The International HapMap Project.: A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sivan Bercovici
    • 1
  • Dan Geiger
    • 1
  1. 1.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations