Skip to main content

Predicting Nucleosome Positioning Using Multiple Evidence Tracks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lubliner, S., Segal, E.: Modeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy. Bioinformatics 25, 1348–1355 (2009)

    Article  Google Scholar 

  2. Yuan, G.C., Liu, J.S.: Genomic Sequence is Highly Predictive of Local Nucleosome Depletion. PLoS Comp. Biol. 4, e13 (2008)

    Google Scholar 

  3. Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thøaström, A., Field, Y., Moore, I.K., Wang, J.Z., Widom, J.: A genomic code for nucleosome positioning. Nature 44, 772–778 (2006)

    Article  Google Scholar 

  4. Peckham, H.E., Thurman, R.E., Fu, Y., Stamatoyannopoulos, J.A., Noble, W.S., Struhl, K., Weng, Z.: Nucleosome positioning signals in genomic DNA. Genome Research 17, 1170–1177 (2007)

    Article  Google Scholar 

  5. Wasson, T., Hartemink, A.J.: An ensemble model of competitive multi-factor binding of the genome. Genome Research 19, 2101–2112 (2009)

    Article  Google Scholar 

  6. Yuan, G.C., Liu, Y.J., Dion, M.F., Slack, M.D., Wu, L.F., Altschuler, S.J., Rando, O.J.: Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005)

    Article  Google Scholar 

  7. Lee, W., Tillo, D., Bray, N., Morse, R.H., Davis, R.W., Hughes, T.R., Nislow, C.: A high-resolution atlas of nucleosome occupancy in yeast. Nature Genetics 39, 1235–1244 (2007)

    Article  Google Scholar 

  8. Yassour, M., Kaplan, T., Jaimovich, A., Friedman, N.: Nucleosome positioning from tiling microarray data. Bioinformatics 24, i139–i146 (2008)

    Google Scholar 

  9. Bilmes, J., Bartels, C.: Graphical Model Architectures for Speech Recognition. IEEE Signal Processing Magazine 22, 89–100 (2005)

    Article  Google Scholar 

  10. Mavrich, T.N., Ioshikhes, I.P., Venters, B.J., Jiang, C., Tomsho, L.P., Qi, J., Schuster, S.C., Albert, I., Pugh, B.F.: A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Research 18, 1073–1083 (2008)

    Article  Google Scholar 

  11. Reynolds, S.M., Bilmes, J.A., Noble, W.S.: Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens (in submission)

    Google Scholar 

  12. Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field, Y., LeProust, E.M., Hughes, T.R., Lieb, J.D., Widom, J., Segal, E.: The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 548, 362–366 (2009)

    Article  Google Scholar 

  13. Sun, W., Xie, W., Xu, F., Grunstein, M., Li, K.-C.: Dissecting Nucleosome Free Regions by a Segmental Semi-Markov Model. PLoS One 4, e4721 (2009)

    Google Scholar 

  14. Field, Y., Kaplan, N., Fondufe-Mittendorf, Y., Moore, I.K., Sharon, E., Lubling, Y., Widom, J., Segal, E.: Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals. PLoS Comp. Biol. 4, e1000216 (2008)

    Google Scholar 

  15. Badis, G., Chan, E.T., van Bakel, H., Pena-Castillo, L., Tillo, D., Tsui, K., Carlson, C.D., Gossett, A.J., Hasinoff, M.J., Warren, C.L., Gebbia, M., Talukder, S., Yang, A., Mnaimneh, S., Terterov, D., Coburn, D., Yeo, A.L., Yeo, Z.X., Clarke, N.D., Lieb, J.D., Ansari, A.Z., Nislow, C., Hughes, T.R.: A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008)

    Article  Google Scholar 

  16. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K.: High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007)

    Article  Google Scholar 

  17. Schones, D.E., Cui, K., Cuddapah, S., Roh, T.Y., Barski, A., Wang, Z., Wei, G., Zhao, K.: Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008)

    Article  Google Scholar 

  18. Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S., Frazer, K.A.: Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 10, R32 (2009)

    Google Scholar 

  19. Teytelman, L., Özaydin, B., Zill, O., Lefrançois, P., Snyder, M., Rine, J., Eisen, M.B.: Impact of Chromatin Structures on DNA Processing for Genomic Analyses. PLoS One 4, e6700 (2009)

    Google Scholar 

  20. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research 36, e105 (2008)

    Google Scholar 

  21. Marioni, J.C., Thorne, N.P., Tavaré, S.: BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data. Bioinformatics 22, 1144–1146 (2006)

    Article  Google Scholar 

  22. Hoffman, M.M., Buske, O.J., Bilmes, J.A., Noble, W.S.: Segway: a dynamic Bayesian network method for segmenting genomic data (in preparation)

    Google Scholar 

  23. Reynolds, S.M., Käll, L., Riffle, M.E., Bilmes, J.A., Noble, W.S.: Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comp. Biol. 4, e1000213 (2008)

    Google Scholar 

  24. Bilmes, J., Zweig, G.: The Graphical Models Toolkit: An Open Source Software System for Speech and Time-Series Processing. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE Press, New York (2002)

    Google Scholar 

  25. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  26. Reynolds, S.M., Bilmes, J.A.: Part-of-speech tagging using virtual evidence and negative training. In: Proc. HLT and EMNLP, pp. 459–466. IEEE Press, New York (2005)

    Google Scholar 

  27. Granek, J.A., Clarke, N.D.: Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol. 6, R87 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reynolds, S.M., Weng, Z., Bilmes, J.A., Noble, W.S. (2010). Predicting Nucleosome Positioning Using Multiple Evidence Tracks. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics