SubMAP: Aligning Metabolic Pathways with Subnetwork Mappings

  • Ferhat Ay
  • Tamer Kahveci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)

Abstract

We consider the problem of aligning two metabolic pathways. Unlike traditional approaches, we do not restrict the alignment to one-to-one mappings between the molecules of the input pathways. We follow the observation that in nature different organisms can perform the same or similar functions through different sets of reactions and molecules. The number and the topology of the molecules in these alternative sets often vary from one organism to another. In other words, given two metabolic pathways of arbitrary topology, we would like to find a mapping that maximizes the similarity between the molecule subsets of query pathways of size at most a given integer k. We transform this problem into an eigenvalue problem. The solution to this eigenvalue problem produces alternative mappings in the form of a weighted bipartite graph. We then convert this graph to a vertex weighted graph. The maximum weight independent subset of this new graph is the alignment that maximizes the alignment score while ensuring consistency. We call our algorithm SubMAP (Subnetwork Mappings in Alignment of Pathways). We evaluate its accuracy and performance on real datasets. Our experiments demonstrate that SubMAP can identify biologically relevant mappings that are missed by traditional alignment methods and it is scalable for real size metabolic pathways.

Availability: Our software and source code in C++ is available at http://bioinformatics.cise.ufl.edu/SubMAP.html

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, J.S., Palsson, B.O.: Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress 16, 927–939 (2000)CrossRefGoogle Scholar
  2. 2.
    Ay, F., Xu, F., Kahveci, T.: Scalable Steady State Analysis of Boolean Biological Regulatory Networks. PLoS ONE 4(12), e7992 (2009)Google Scholar
  3. 3.
    Schuster, S., Pfeiffer, T., Koch, I., Moldenhauer, F., Dandekar, T.: Exploring the Pathway Structure of Metabolism: Decomposition into Subnetworks and Application to Mycoplasma pneumoniae. Bioinformatics 18, 351–361 (2002)CrossRefGoogle Scholar
  4. 4.
    Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: ISMB, pp. 200–207 (2004)Google Scholar
  5. 5.
    Qian, X., Yoon, B.: Effective Identification of Conserved Pathways in Biological Networks Using Hidden Markov Models. PLoS ONE 4(12), e8070 (2009)Google Scholar
  6. 6.
    Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)CrossRefGoogle Scholar
  7. 7.
    Ay, F., Kahveci, T., de Crecy-Lagard, V.: Consistent alignment of metabolic pathways without abstraction. In: Computational Systems Bioinformatics Conference (CSB), vol. 7, pp. 237–248 (2008)Google Scholar
  8. 8.
    Ay, F., Kahveci, T., de Crecy-Lagard, V.: A fast and accurate algorithm for comparative analysis of metabolic pathways. Journal of Bioinformatics and Computational Biology (JBCB) 7(3), 389–428 (2009)CrossRefGoogle Scholar
  9. 9.
    Tohsato, Y., Nishimura, Y.: Metabolic Pathway Alignment Based on Similarity of Chemical Structures. Information and Media Technologies 3, 191–200 (2008)Google Scholar
  10. 10.
    Tohsato, Y., Matsuda, H., Hashimoto, A.: A Multiple Alignment Algorithm for Metabolic Pathway Analysis Using Enzyme Hierarchy. In: ISMB, pp. 376–383 (2000)Google Scholar
  11. 11.
    Cheng, Q., Harrison, R., Zelikovsky, A.: MetNetAligner: a web service tool for metabolic network alignments. Bioinformatics 25(15), 1989–1990 (2009)CrossRefGoogle Scholar
  12. 12.
    Sridhar, P., Kahveci, T., Ranka, S.: An iterative algorithm for metabolic network-based drug target identification. In: Pacific Symposium on Biocomputing (PSB), vol. 12, pp. 88–99 (2007)Google Scholar
  13. 13.
    Watanabe, N., Cherney, M.M., van Belkum, M.J., Marcus, S.L., Flegel, M.D., Clay, M.D., Deyholos, M.K., Vederas, J.C., James, M.: Crystal structure of LL-diaminopimelate aminotransferase from Arabidopsis thaliana: a recently discovered enzyme in the biosynthesis of L-lysine by plants and Chlamydia. Journal of Molecular Biology 371(3), 685–702 (2007)CrossRefGoogle Scholar
  14. 14.
    Francke, C., Siezen, R.J., Teusink, B.: Reconstructing the metabolic network of a bacterium from its genome. Trends in Microbiology 13(11), 550–558 (2005)CrossRefGoogle Scholar
  15. 15.
    Clemente, J.C., Satou, K., Valiente, G.: Reconstruction of Phylogenetic Relationships from Metabolic Pathways Based on the Enzyme Hierarchy and the Gene Ontology. Genome Informatics 16(2), 45–55 (2005)Google Scholar
  16. 16.
    Heymans, M., Singh, A.: Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 19, 138–146 (2003)CrossRefGoogle Scholar
  17. 17.
    Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Research 28, 4021–4028 (2000)CrossRefGoogle Scholar
  18. 18.
    Green, M.L., Karp, P.: A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004)CrossRefGoogle Scholar
  19. 19.
    Damaschke, P.: Graph-Theoretic Concepts in Computer Science. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 72–78. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    Webb, E.C.: Enzyme nomenclature 1992 . Academic Press, London (1992)Google Scholar
  21. 21.
    Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 16–31. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Deutscher, D., Meilijson, I., Schuster, S., Ruppin, E.: Can single knockouts accurately single out gene functions? BMC Systems Biology 2, 50 (2008)CrossRefGoogle Scholar
  23. 23.
    McCoy, A.J., Adams, N.E., Hudson, A.O., Gilvarg, C., Leustek, T., Maurelli, A.T.: L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. PNAS 103(47), 17909–17914 (2006)CrossRefGoogle Scholar
  24. 24.
    Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 27(1), 29–34 (1999)CrossRefGoogle Scholar
  25. 25.
    Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. Journal of the American Chemical Society (JACS) 125(39), 11853–11865 (2003)CrossRefGoogle Scholar
  26. 26.
    LovGasz, L.: Stable set and polynomials. Discrete Mathematics 124, 137–153 (1994)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Austrin, P., Khot, S., Safra, M.: Inapproximability of Vertex Cover and Independent Set in Bounded Degree Graphs. In: IEEE Conference on Computational Complexity, pp. 74–80 (2009)Google Scholar
  28. 28.
    Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum weighted independent set problem. Discrete Applied Mathematics 126, 313–322 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Saunders, P.P., Broquist, H.: Saccharopine, an intermediate of aminoadipic acid pathway of lysine biosynthesis. Journal of Biological Chemistry 241, 3435–3440 (1966)Google Scholar
  30. 30.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ferhat Ay
    • 1
  • Tamer Kahveci
    • 1
  1. 1.Computer and Information Science and EngineeringUniversity of FloridaGainesville

Personalised recommendations