The Poisson Margin Test for Normalisation Free Significance Analysis of NGS Data

  • Adam Kowalczyk
  • Justin Bedo
  • Thomas Conway
  • Bryan Beresford-Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)

Abstract

Motivation: The current methods for the determination of the statistical significance of peaks and regions in NGS data require an explicit normalisation step to compensate for (global or local) imbalances in the sizes of sequenced and mapped libraries. There are no canonical methods for performing such compensations, hence a number of different procedures serving this goal in different ways can be found in the literature. Unfortunately, the normalisation has a significant impact on the final results. Different methods yield very different numbers of detected “significant peaks” even in the simplest scenario of ChIP-Seq experiments which compare the enrichment in a single sample relative to a matching control. This becomes an even more acute issue in the more general case of the comparison of multiple samples, where a number of arbitrary design choices will be required in the data analysis stage, each option resulting in possibly (significantly) different outcomes.

Results: In this paper we investigate a principled statistical procedure which eliminates the need for a normalisation step. We outline its basic properties, in particular the scaling upon depth of sequencing. For the sake of illustration and comparison we report the results of re-analysing a ChIP-Seq experiment for transcription factor binding site detection. In order to quantify the differences between outcomes we use a novel method based on the accuracy of in silico prediction by SVM-models trained on part of the genome and tested on the remainder.

Availability: The supplementary material is available at [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kowalczyk, A., Bedo, J., Conway, T., Beresford-Smith, B.: Poisson Margin Test for Normalisation Free Significance Analysis of NGS Data - Supplementary Materials (2009), http://www.genomics.csse.unimelb.edu.au/peakfiltsup
  2. 2.
    Rozowsky, J., Euskirchen, G., Auerbach, R., Zhang, Z., Gibson, T., Bjornson, R., Carriero, N., Snyder, M., Gerstein, M.: Peakseq enables systematic scoring of chip-seq experiments relative to controls. Nature Biotechnology 27, 66–75 (2009)CrossRefGoogle Scholar
  3. 3.
    Nix, D., Courdy, S., Boucher, K.: Empirical methods for controlling false positives and estimating confidence in chip-seq peaks. BMC Bioinformatics 9, 523 (2008)CrossRefGoogle Scholar
  4. 4.
    Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., et al.: Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007)CrossRefGoogle Scholar
  5. 5.
    Kowalczyk, A.: Some Formal Results for Significance of Short Read Concentrations (2009), http://www.genomics.csse.unimelb.edu.au/shortreadtheory
  6. 6.
    Baggerly, K.A., Deng, L., Morris, J.S., Aldaz, C.M.: Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics 19, 1477–1483 (2003)CrossRefGoogle Scholar
  7. 7.
    Robinson, M., Smyth, G.: Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23(21), 2881–2887 (2007)CrossRefGoogle Scholar
  8. 8.
    Bloushtain-Qimron, N., Yao, J., Snyder, E.: Cell type-specific dna methylation patterns in the human breast. PANS 105, 14076–14081 (2008)CrossRefGoogle Scholar
  9. 9.
    Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K., Peng, W.: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009)CrossRefGoogle Scholar
  10. 10.
    Keeping, E.: Introduction to Statistical Infernce. Dover, New York (1995) ISBN 0-486-68502-0; Reprint of 1962 edition by D. Van Nostrand Co., Princeton, New JerseyGoogle Scholar
  11. 11.
    Zhang, Y., Liu, T., Meyer, C., Eeckhoute, J., Johnson, D., Bernstein, B., Nussbaum, C., Myers, R., Brown, M., Li, W., Liu, X.S.: Model-based analysis of chip-seq (macs). Genome Biology 9(9), R137 (2008)Google Scholar
  12. 12.
    Ji, H., Jiang, H., Ma, W., Johnson, D., Myers, R., Wong, W.: An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotechnology 26, 1293–1300 (2008)CrossRefGoogle Scholar
  13. 13.
    Sonnenburg, S., Zien, A., Ratsch, G.: Arts: accurate recognition of transcription starts in human. Bioinformatics 22, e423–e480 (2006)Google Scholar
  14. 14.
    Abeel, T., Van de Peer, Y., Saeys, Y.: Toward a gold standard for promoter prediction evaluation. Bioinformatics 25, i313–i320 (2009)Google Scholar
  15. 15.
    Bedo, J., MacIntyre, G., Haviv, I., Kowalczyk, A.: Simple SVM based whole-genome Segmentation (2009), Available from Nature Precedings http://dx.doi.org/10.1038/npre.2009.3811.1

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Kowalczyk
    • 1
    • 2
  • Justin Bedo
    • 1
    • 2
  • Thomas Conway
    • 1
    • 3
  • Bryan Beresford-Smith
    • 1
    • 2
  1. 1.Victoria Research LaboratoryNICTA 
  2. 2.Department of Electrical and Electronic Engineering 
  3. 3.Department of Computer Science and Software EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations