Simultaneous Identification of Causal Genes and Dys-Regulated Pathways in Complex Diseases

  • Yoo-Ah Kim
  • Stefan Wuchty
  • Teresa M. Przytycka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)

Abstract

In complex diseases different genotypic perturbations of the cellular system often lead to the same phenotype. While characteristic genomic alterations in many cancers exist, other combinations of genomic perturbations potentially lead to the same disease, dysregulating important pathways of the cellular system. In this study, we developed novel computational methods to identify dysregulated pathways and their direct causes in individual patients or patient groups. Specifically, we introduced efficient and powerful graph theoretic algorithms to identify such dysregulated pathways and their causal genes and applied our methods to a large set of glioma specific molecular data.

Keywords

Complex disease genetic variations copy number variation biological pathway graph theoretic algorithm glioma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRefGoogle Scholar
  2. 2.
    Lesnick, T.G., Papapetropoulos, S., Mash, D.C., Ffrench-Mullen, J., Shehadeh, L., de Andrade, M., Henley, J.R., Rocca, W.A., Ahlskog, J.E., Maraganore, D.M.: A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 3 3, e98 (2007)Google Scholar
  3. 3.
    Morrow, E.M., Yoo, S.Y., Flavell, S.W., Kim, T.K., Lin, Y., Hill, R.S., Mukaddes, N.M., Balkhy, S., Gascon, G., Hashmi, A., Al-Saad, S., Ware, J., Joseph, R.M., Greenblatt, R., Gleason, D., Ertelt, J.A., Apse, K.A., Bodell, A., Partlow, J.N., Barry, B., Yao, H., Markianos, K., Ferland, R.J., Greenberg, M.E., Walsh, C.A.: Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008)CrossRefGoogle Scholar
  4. 4.
    Oti, M., Brunner, H.G.: The modular nature of genetic diseases. Clin. Genet. 71, 1–11 (2007)CrossRefGoogle Scholar
  5. 5.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  6. 6.
    Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D.: Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)CrossRefGoogle Scholar
  7. 7.
    Ramaswamy, S., Ross, K.N., Lander, E.S., Golub, T.R.: A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003)CrossRefGoogle Scholar
  8. 8.
    Nagasaki, K., Miki, Y.: Gene expression profiling of breast cancer. Breast Cancer 13, 2–7 (2006)CrossRefGoogle Scholar
  9. 9.
    Thompson, M., Lapointe, J., Choi, Y.L., Ong, D.E., Higgins, J.P., Brooks, J.D., Pollack, J.R.: Identification of candidate prostate cancer genes through comparative expression-profiling of seminal vesicle. Prostate 68, 1248–1256 (2008)CrossRefGoogle Scholar
  10. 10.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson Jr., J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  11. 11.
    van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)CrossRefGoogle Scholar
  12. 12.
    Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C., Conklin, B.R.: MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology 4, R7 (2003)Google Scholar
  13. 13.
    Lee, E., Chuang, H.Y., Kim, J.W., Ideker, T., Lee, D.: Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217 (2008)Google Scholar
  14. 14.
    Keller, A., Backes, C., Gerasch, A., Kaufmann, M., Kohlbacher, O., Meese, E., Lenhof, H.P.: A novel algorithm for detecting differentially regulated paths based on Gene Set Enrichment Analysis. Bioinformatics (2009)Google Scholar
  15. 15.
    Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)CrossRefGoogle Scholar
  16. 16.
    Kohler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for priorization of candidate genes. Am. J. Human Genet. 82, 949–958 (2008)CrossRefGoogle Scholar
  17. 17.
    Vanunu, O., Sharan, R.: A propagation-based algorithm for inferring gene-disease associations. In: German Conference on Bioinformatics. LNI, vol. 136 (2008)Google Scholar
  18. 18.
    Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease. Mol. Sys. Biol. 4, 189 (2008)Google Scholar
  19. 19.
    Ulitsky, I., Karp, R., Shamir, R.: Detecting Disease-Specific Dysregulated Pathways Via Analysis of Clinical Expression Profiles Research in Computational Molecular Biology, 347–359 (2008)Google Scholar
  20. 20.
    Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., Sieberts, S.K., Monks, S., Reitman, M., Zhang, C., Lum, P.Y., Leonardson, A., Thieringer, R., Metzger, J.M., Yang, L., Castle, J., Zhu, H., Kash, S.F., Drake, T.A., Sachs, A., Lusis, A.J.: An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005)CrossRefGoogle Scholar
  21. 21.
    Sieberts, S.K., Schadt, E.E.: Moving toward a system genetics view of disease. Mamm Genome 18, 389–401 (2007)CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Zheng, J., Przytycka, T.: Discovery of regulatory mechanisms by genome-wide from gene expression variation by eQTL analyisis. In: Lonardi, J.Y.C.a.S. (ed.) Biological Data Mining, pp. 205–228. CRC Press, Boca Raton (2009)Google Scholar
  23. 23.
    Tu, Z., Wang, L., Arbeitman, M.N., Chen, T., Sun, F.: An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics 22, e489–e496 (2006)Google Scholar
  24. 24.
    Suthram, S., Beyer, A., Karp, R.M., Eldar, Y., Ideker, T.: eQED: an efficient method for interpreting eQTL associations using protein networks. Mol. Syst. Biol. 4, 162 (2008)CrossRefGoogle Scholar
  25. 25.
    Kotliarov, Y., Steed, M.E., Christopher, N., Walling, J., Su, Q., Center, A., Heiss, J., Rosenblum, M., Mikkelsen, T., Zenklusen, J.C., Fine, H.A.: High-resolution global genomic survey of 178 gliomas reveals novel regions of copy number alteration and allelic imbalances. Cancer Res. 66, 9428–9436 (2006)CrossRefGoogle Scholar
  26. 26.
    Li, A., Walling, J., Ahn, S., Kotliarov, Y., Su, Q., Quezado, M., Oberholtzer, J.C., Park, J., Zenklusen, J.C., Fine, H.A.: Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 69, 2091–2099 (2009)CrossRefGoogle Scholar
  27. 27.
    Press, W., Teukowsky, S.A., Vetterling, W.T., Fannery, B.P.: Numerical Recipes - The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)Google Scholar
  28. 28.
    Li, C., Wong, W.H.: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U.S.A. 98, 31–36 (2001)MATHCrossRefGoogle Scholar
  29. 29.
    Fridlyand, J., Snijders, A.M., Pinkel, D., Albertson, D.G., Jain, A.N.: Hidden Markov models approach to the analysis of array CGH data. Jourrnal of Multivariate Analysis 90, 132–153 (2004)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y., Zhang, J.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)Google Scholar
  31. 31.
    Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M.D., O’Connor, L., Li, M., Taylor, R., Dharsee, M., Ho, Y., Heilbut, A., Moore, L., Zhang, S., Ornatsky, O., Bukhman, Y.V., Ethier, M., Sheng, Y., Vasilescu, J., Abu-Farha, M., Lambert, J.P., Duewel, H.S., Stewart II,, Kuehl, B., Hogue, K., Colwill, K., Gladwish, K., Muskat, B., Kinach, R., Adams, S.L., Moran, M.F., Morin, G.B., Topaloglou, T., Figeys, D.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007)CrossRefGoogle Scholar
  32. 32.
    Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005)CrossRefGoogle Scholar
  33. 33.
    Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.E.: A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRefGoogle Scholar
  34. 34.
    Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572–D574 (2007)Google Scholar
  35. 35.
    Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R., Hermjakob, H.: IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35, D561–D565 (2007)Google Scholar
  36. 36.
    Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S., Mahajan, S., May, B., Schmidt, E., Vastrik, I., Wu, G., Birney, E., Stein, L., D’Eustachio, P.: Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. (2008)Google Scholar
  37. 37.
    Peri, S., Navarro, J.D., Kristiansen, T.Z., Amanchy, R., Surendranath, V., Muthusamy, B., Gandhi, T.K., Chandrika, K.N., Deshpande, N., Suresh, S., Rashmi, B.P., Shanker, K., Padma, N., Niranjan, V., Harsha, H.C., Talreja, N., Vrushabendra, B.M., Ramya, M.A., Yatish, A.J., Joy, M., Shivashankar, H.N., Kavitha, M.P., Menezes, M., Choudhury, D.R., Ghosh, N., Saravana, R., Chandran, S., Mohan, S., Jonnalagadda, C.K., Prasad, C.K., Kumar-Sinha, C., Deshpande, K.S., Pandey, A.: Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, D497–D501 (2004)Google Scholar
  38. 38.
    Jiang, C., Xuan, Z., Zhao, F., Zhang, M.Q.: TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 35, D137–D140 (2007)Google Scholar
  39. 39.
    Linding, R., Jensen, L.J., Ostheimer, G.J., van Vugt, M.A., Jorgensen, C., Miron, I.M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J.G., Samson, L.D., Woodgett, J.R., Russell, R.B., Bork, P., Yaffe, M.B., Pawson, T.: Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007)CrossRefGoogle Scholar
  40. 40.
    Linding, R., Jensen, L.J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M.B., Pawson, T.: NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res. 36, D695–D699 (2008)Google Scholar
  41. 41.
    Diella, F., Gould, C.M., Chica, C., Via, A., Gibson, T.J.: Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res. 36, D240–D244 (2008)Google Scholar
  42. 42.
    Thierry-Mieg, D., Thierry-Mieg, J.: AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7(suppl.1), S12 11–14 (2006)Google Scholar
  43. 43.
    Wang, X.Y., Smith, D.I., Liu, W., James, C.D.: GBAS, a novel gene encoding a protein with tyrosine phosphorylation sites and a transmembrane domain, is co-amplified with EGFR. Genomics 49, 448–451 (1998)CrossRefGoogle Scholar
  44. 44.
    Natarajan, M., Hecker, T.P., Gladson, C.L.: FAK signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer journal (Sudbury, Mass) 9, 126–130 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yoo-Ah Kim
    • 1
  • Stefan Wuchty
    • 1
  • Teresa M. Przytycka
    • 1
  1. 1.National Center for Biotechnology Information, NLM, NIHBethesda

Personalised recommendations