Towards Automated Structure-Based NMR Resonance Assignment

  • Richard Jang
  • Xin Gao
  • Ming Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6044)


We propose a general framework for solving the structure-based NMR backbone resonance assignment problem. The core is a novel 0-1 integer programming model that can start from a complete or partial assignment, generate multiple assignments, and model not only the assignment of spins to residues, but also pairwise dependencies consisting of pairs of spins to pairs of residues. It is still a challenge for automated resonance assignment systems to perform the assignment directly from spectra without any manual intervention. To test the feasibility of this for structure-based assignment, we integrated our system with our automated peak picking and sequence-based resonance assignment system to obtain an assignment for the protein TM1112 with 91% recall and 99% precision without manual intervention. Since using a known structure has the potential to allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data, we work towards the goal of automated structure-based assignment using only such labeled data. Our system reduced the assignment error of Xiong-Pandurangan-Bailey-Kellogg’s contact replacement (CR) method, which to our knowledge is the most error-tolerant method for this problem, by 5 folds on average. By using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for Ubiquitin, where the type prediction accuracy is 83%, we achieved 91% assignment accuracy, compared to the 59% accuracy that was obtained without correcting for typing errors.


Nuclear Magnetic Resonance Spin System Integer Linear Programming Resonance Assignment Nuclear Magnetic Resonance Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alipanahi, B., Gao, X., Karakoc, E., Balbach, F., Donaldson, L., Arrowsmith, C., Li, M.: IPASS: Error tolerant NMR backbone resonance assignment by linear programming. Technical Report CS-2009-16, David R. Cheriton School of Computer Science, University of Waterloo, ON (2009),
  2. 2.
    Alipanahi, B., Gao, X., Karakoc, E., Donaldson, L., Li, M.: PICKY: A novel SVD-based NMR spectra peak picking method. Bioinformatics 25, 268–275 (2009)CrossRefGoogle Scholar
  3. 3.
    Altieri, A.S., Byrd, R.A.: Automation of NMR structure determination of proteins. Curr. Opin. Struct. Biol. 14(5), 547–553 (2004)CrossRefGoogle Scholar
  4. 4.
    Apaydin, M.S., Conitzer, V., Donald, B.R.: Structure-based protein NMR assignments using native structural ensembles. J. Biomol. NMR 40(4), 263–276 (2008)CrossRefGoogle Scholar
  5. 5.
    Bailey-Kellogg, C., Widge, A., Kelly, J., Brushweller, J., Donald, B.R.: The NOESY Jigsaw: Automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J. Comput. Biol. 7, 537–558 (2000)CrossRefGoogle Scholar
  6. 6.
    Bartels, C., Güntert, P., Billeter, M., Wüthrich, K.: GARANT - A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J. Comput. Chem. 18, 139–149 (1997)CrossRefGoogle Scholar
  7. 7.
    Billeter, M., Wagner, G., Wüthrich, K.: Solution NMR structure determination of proteins revisited. J. Biomol. NMR 42(3), 155–158 (2008)CrossRefGoogle Scholar
  8. 8.
    Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  9. 9.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009)Google Scholar
  10. 10.
    Coggins, B.E., Zhou, P.: PACES: Protein sequential assignment by computer-assisted exhaustive search. J. Biomol. NMR 26(2), 93–111 (2003)CrossRefGoogle Scholar
  11. 11.
    Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for mixed integer programming problems. Integer Programming and Combinatorial Optimization, 280–294 (2007)Google Scholar
  12. 12.
    Drenth, J.: Principles of Protein X-Ray Crystallography, 3rd edn. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Erdmann, M.A., Rule, G.S.: Rapid protein structure detection and assignment using residual dipolar couplings. Technical Report CMU-CS-02-195, School of Computer Science, Carnegie Mellon University (2002)Google Scholar
  14. 14.
    Fiorito, F., Herrmann, T., Damberger, F.F., Wüthrich, K.: Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H, 1H]-NOESY. J. Biomol. NMR 42(1), 23–33 (2008)CrossRefGoogle Scholar
  15. 15.
    Goddard, T.D., Kneller, D.G.: Sparky 3. University of California, San FranciscoGoogle Scholar
  16. 16.
    Greistorfer, P., Lokketangen, A., Vob, S., Woodruff, D.: Experiments concerning sequential versus simultaneous maximization of objective function and distance. Journal of Heuristics 14(6), 613–625 (2008)CrossRefGoogle Scholar
  17. 17.
    Grishaev, A., Steren, C.A., Wu, B., Pineda-Lucena, A., Arrowsmith, C., Llinas, M.: Abacus, a direct method for protein NMR structure computation via assembly of fragments. Proteins 61(1), 36–43 (2005)CrossRefGoogle Scholar
  18. 18.
    Gronwald, W., Willard, L., Jellard, T., Boyko, R.F., Rajarathnam, K., Wishart, D.S., Sönnichsen, F.D., Sykes, B.D.: CAMRA: Chemical shift based computer aided protein NMR assignments. J. Biomol. NMR 12(3), 395–405 (1998)CrossRefGoogle Scholar
  19. 19.
    Güntert, P., Salzmann, M., Braun, D., Wüthrich, K.: Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. J. Biomol. NMR 18(2), 129–137 (2000)CrossRefGoogle Scholar
  20. 20.
    Harris, R.: The Ubiquitin NMR Resource Page,
  21. 21.
    Hus, J., Prompers, J.J., Brüschweiler, R.: Assignment strategy for proteins with known structure. J. Magn. Reson. 157(1), 119–123 (2002)CrossRefGoogle Scholar
  22. 22.
    Jung, Y., Zweckstetter, M.: Backbone assignment of proteins with known structure using residual dipolar couplings. J. Biomol. NMR 30(1), 25–35 (2004)CrossRefGoogle Scholar
  23. 23.
    Jung, Y., Zweckstetter, M.: MARS – robust automatic backbone assignment of proteins. J. Biomol. NMR 30(1), 11–23 (2004)CrossRefGoogle Scholar
  24. 24.
    Kamisetty, H., Bailey-Kellogg, C., Pandurangan, G.: An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22(2), 172–180 (2006)CrossRefGoogle Scholar
  25. 25.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Langmead, C.J., Donald, B.R.: An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR 29(2), 111–138 (2004)CrossRefGoogle Scholar
  27. 27.
    Langmead, C.J., Yan, A., Lilien, R., Wang, L., Donald, B.R.: A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. J. Comput. Biol. 11(2-3), 277–298 (2004)CrossRefGoogle Scholar
  28. 28.
    Lemak, A., Steren, C.A., Arrowsmith, C.H.: Sequence specific resonance assignment via Multicanonical Monte Carlo search using an ABACUS approach. J. Biomol. NMR 41(1), 29–41 (2008)CrossRefGoogle Scholar
  29. 29.
    Marin, A., Malliavin, T.E., Nicolas, P., Delsuc, M.-A.: From NMR chemical shifts to amino acid types: investigation of the predictive power carried by nuclei. J. Biomol. NMR 30(1), 47–60 (2004)CrossRefGoogle Scholar
  30. 30.
    Meiler, J., Baker, D.: Rapid protein fold determination using unassigned NMR data. Proc. Natl. Acad. Sci. U.S.A. 100(26), 15404–15409 (2003)CrossRefGoogle Scholar
  31. 31.
    Mittermaier, A., Kay, L.E.: New tools provide new insights in NMR studies of protein dynamics. Science 312(5771), 224–228 (2006)CrossRefGoogle Scholar
  32. 32.
    Moseley, H.N., Sahota, G., Montelione, G.T.: Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J. Biomol. NMR 28(4), 341–355 (2004)CrossRefGoogle Scholar
  33. 33.
    Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP): Round VII. Proteins 69, 3–9 (2007)CrossRefGoogle Scholar
  34. 34.
    Moult, J., Fidelis, K., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP): Round VI. Proteins 61, 3–7 (2005)CrossRefGoogle Scholar
  35. 35.
    Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., James, T.L., Homans, S.W., Kessler, H., Luchinat, C., Meyer, B., Oschkinat, H., Peng, J., Schwalbe, H., Siegal, G.: Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. (August 2008)Google Scholar
  36. 36.
    Pintacuda, G., Keniry, M.A., Huber, T., Park, A.Y., Dixon, N.E., Otting, G.: Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J. Am. Chem. Soc. 126(9), 2963–2970 (2004)CrossRefGoogle Scholar
  37. 37.
    Pons, J.L., Delsuc, M.A.: RESCUE: An artificial neural network tool for the NMR spectral assignment of proteins. J. Biomol. NMR 15(1), 15–26 (1999)CrossRefGoogle Scholar
  38. 38.
    Pristovsek, P., Franzoni, L.: Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data. J. Comput. Chem. 27(6), 791–797 (2006)CrossRefGoogle Scholar
  39. 39.
    Pristovsek, P., Rüterjans, H., Jerala, R.: Semiautomatic sequence-specific assignment of proteins based on the tertiary structure - the program st2nmr. J. Comput. Chem. 23, 335–340 (2002)CrossRefGoogle Scholar
  40. 40.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput.-Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  41. 41.
    Powers, R., Mercier, K.A., Copeland, J.C.: The application of FAST-NMR for the identification of novel drug discovery targets. Drug Discov. Today 13(3-4), 172–179 (2008)CrossRefGoogle Scholar
  42. 42.
    Skinner, A.L., Laurence, J.S.: High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J. Pharm. Sci. 97(11), 4670–4695 (2008)CrossRefGoogle Scholar
  43. 43.
    Stratmann, D., Heijenoort, C., Guittet, E.: NOEnet–use of NOE networks for NMR resonance assignment of proteins with known 3D structure. Bioinformatics 25(4), 474–481 (2009)CrossRefGoogle Scholar
  44. 44.
    Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Harano, Y., Ioannidis, Y.E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C.F., Tolmie, D.E., Wenger, R.K., Yao, H., Markley, J.L.: BioMagResBank. Nucleic Acids Res. 36(Database issue), D402–D408 (2008)Google Scholar
  45. 45.
    Wang, A.C., Bax, A.: Determination of the backbone dihedral angles phi in human ubiquitin from reparametrized empirical Karplus equations. J. Am. Chem. Soc. 118(10), 2483–2494 (1996)CrossRefGoogle Scholar
  46. 46.
    Wu, K., Chang, J., Chen, J., Chang, C., Wu, W., Huang, T., Sung, T., Hsu, W.: RIBRA–An error-tolerant algorithm for the NMR backbone assignment problem. J. Comput. Biol. 13(2), 229–244 (2006)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Wüthrich, K.: NMR of Proteins and Nucleic Acids. John Wiley & Sons, New York (1986)Google Scholar
  48. 48.
    Xia, Y., Yee, A., Semesi, A., Arrowsmith, C.H.: Solution structure of hypothetical protein TM1112. PDB Database (2002)Google Scholar
  49. 49.
    Xiong, F., Bailey-Kellogg, C.: A hierarchical grow-and-match algorithm for backbone resonance assignments given 3D structure. In: BIBE 2007, pp. 403–410 (2007)Google Scholar
  50. 50.
    Xiong, F., Pandurangan, G., Bailey-Kellogg, C.: Contact replacement for NMR resonance assignment. Bioinformatics 24(13), 205–213 (2008)CrossRefGoogle Scholar
  51. 51.
    Zimmerman, D.E., Kulikowski, C.A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, S., Chien, C., Powers, R., Montelione, G.T.: Automated analysis of protein NMR assignments using methods from artificial intelligence. J. Mol. Biol. 269(4), 592–610 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Richard Jang
    • 1
  • Xin Gao
    • 1
  • Ming Li
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations