Advertisement

Optimistic Fair Priced Oblivious Transfer

  • Alfredo Rial
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

Priced oblivious transfer (POT) is a two-party protocol between a vendor and a buyer in which the buyer purchases digital goods without the vendor learning what is bought. Although privacy properties are guaranteed, current schemes do not offer fair exchange. A malicious vendor can, e.g., prevent the buyer from retrieving the goods after receiving the payment, and a malicious buyer can also accuse an honest vendor of misbehavior without the vendor being able to prove this untrue. In order to address these problems, we define the concept of optimistic fair priced oblivious transfer and propose a generic construction that extends secure POT schemes to realize this functionality. Our construction, based on verifiably encrypted signatures, employs a neutral adjudicator that is only involved in case of dispute, and shows that disputes can be resolved without the buyer losing her privacy, i.e., the buyer does not need to disclose which digital goods she is interested in. We show that our construction can be instantiated with an existing universally composable POT scheme, and furthermore we propose a novel full-simulation secure POT scheme that is much more efficient.

Keywords

Priced oblivious transfer verifiably encrypted signatures fair exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: examining user scenarios and privacy preferences. In: ACM Conference on Electronic Commerce, pp. 1–8 (1999)Google Scholar
  2. 2.
    Tsai, J., Egelman, S., Cranor, L., Acquisti, R.: The effect of online privacy information on purchasing behavior: An experimental study (June 2007) (working paper)Google Scholar
  3. 3.
    Enforcing privacy promises: Section 5 of the ftc act. Federal Trade Commission Act, http://www.ftc.gov/privacy/privacyinitiatives/promises.html
  4. 4.
    Kremer, S.: Formal analysis of optimistic fair exchange protocols (2004)Google Scholar
  5. 5.
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Tobias, C.: Practical oblivious transfer protocols. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 415–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer. In: [42], pp. 231–247Google Scholar
  8. 8.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O.: A simple protocol for signing contracts. In: CRYPTO, pp. 133–136 (1983)Google Scholar
  10. 10.
    Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with off-line ttp. In: IEEE Symposium on Security and Privacy, pp. 77–85. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  11. 11.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures (extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Avoine, G., Vaudenay, S.: Optimistic fair exchange based on publicly verifiable secret sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 74–85. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a construction without random oracles. In: [42], pp. 17–34Google Scholar
  16. 16.
    Ray, I., Ray, I.: An anomymous fair exchange e-commerce protocol. In: IPDPS, p. 172. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  17. 17.
    Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology 18(1), 1–35 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communications Security, pp. 131–140. ACM, New York (2009)Google Scholar
  21. 21.
    Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  24. 24.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  25. 25.
    Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 239–252 (1991)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: [41], pp. 234–252Google Scholar
  28. 28.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Damgård, I.: Concurrent zero-knowledge is easy in practice. Available online at Theory of Cryptography Library (June 1999)Google Scholar
  30. 30.
    Damgård, I.: On σ-protocols (2002), http://www.daimi.au.dk/~ivan/Sigma.ps
  31. 31.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  32. 32.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich (March 1997)Google Scholar
  33. 33.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 136–145 (2001)Google Scholar
  34. 34.
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: [41], pp. 179–197Google Scholar
  35. 35.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: First ACM Conference on Computer and Communication Security, Association for Computing Machinery, pp. 62–73 (1993)Google Scholar
  36. 36.
    Rial, A., Preneel, B.: Optimistic fair priced oblivious transfer (2009), http://www.cosic.esat.kuleuven.be/publications/article-1428.pdf
  37. 37.
    Okada, Y., Manabe, Y., Okamoto, T.: An optimistic fair exchange protocol and its security in the universal composability framework. IJACT 1(1), 70–77 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Canetti, R.: Obtaining universally compoable security: Towards the bare bones of trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 88–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Herranz, J.: Restricted adaptive oblivious transfer. Cryptology ePrint Archive, Report 2008/182 (2008), http://eprint.iacr.org/
  40. 40.
    Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)Google Scholar
  41. 41.
    Pieprzyk, J. (ed.): ASIACRYPT 2008. LNCS, vol. 5350. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  42. 42.
    Shacham, H., Waters, B. (eds.): Pairing 2009. LNCS, vol. 5671. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alfredo Rial
    • 1
  • Bart Preneel
    • 1
  1. 1.IBBT and Katholieke Universiteit Leuven, ESAT/COSICLeuven-HeverleeBelgium

Personalised recommendations