Advertisement

Batch Range Proof for Practical Small Ranges

  • Kun Peng
  • Feng Bao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

A batch proof and verification technique by Chida and Yamamoto is extended to work in a more general scenario. The new batch proof and verification technique is more useful and can save more cost than the original technique. An application of the new batch proof and verification technique is range proof, which proves that a secret integer is in an interval range. Like the most resent and advanced range proof protocol by Camenisch, Chaabouni and Shelat in Asiacrypt2008, the new range proof technique is especially suitable for practical small ranges, but more efficient and stronger in security than the former. The new range proof technique is very efficient and more efficient than the existing solutions in practical small ranges. Moreover, it achieves stronger security and stronger privacy (perfect honest-verifier zero knowledge) than most of the existing range proof schemes.

Keywords

Discrete Logarithm Partial Knowledge Random Oracle Model Zero Knowledge Knowledge Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Aditya, R., Peng, K., Boyd, C., Dawson, E.: Batch verification for equality of discrete logarithms and threshold decryptions. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 494–508. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Chaabouni, R., Lipmaa, H., Shelat, A.: Additive combinatorics and discrete logarithm based range protocols (2009), http://eprint.iacr.org/2009/469
  7. 7.
    Chida, K., Yamamoto, G.: Batch processing for proofs of partial knowledge and its applications. IEICE Trans. Fundamentals E91CA(1), 150–159 (2008)Google Scholar
  8. 8.
    Chida, K., Kobayashi, K., Morita, H.: Efficient sealed-bid auctions for massive numbers of bidders with lump comparison. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 408–419. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.S.: Batching schnorr identification scheme with applications to privacy-preserving authorization and low-bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 276–292. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Kikuchi, H.: (m+1)st-price auction. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, p. 341. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Omote, K., Miyaji, A.: A second-price sealed-bid auction with the discriminant of the p-th root. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 57–71. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Peng, K., Bao, F.: Batch zk proof and verification of or logic. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 141–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Peng, K., Boyd, C.: Batch zero knowledge proof and verification and its applications. ACM TISSEC 10(2), Article No. 6 (May 2007)Google Scholar
  19. 19.
    Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kun Peng
    • 1
  • Feng Bao
    • 1
  1. 1.Institute for Infocomm Research 

Personalised recommendations