Advertisement

Flexible Partial Enlargement to Accelerate Gröbner Basis Computation over \(\mathbb{F}_2\)

  • Johannes Buchmann
  • Daniel Cabarcas
  • Jintai Ding
  • Mohamed Saied Emam Mohamed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

Recent developments in multivariate polynomial solving algorithms have made algebraic cryptanalysis a plausible threat to many cryptosystems. However, theoretical complexity estimates have shown this kind of attack unfeasible for most realistic applications. In this paper we present a strategy for computing Gröbner basis that challenges those complexity estimates. It uses a flexible partial enlargement technique together with reduced row echelon forms to generate lower degree elements–mutants. This new strategy surpasses old boundaries and obligates us to think of new paradigms for estimating complexity of Gröbner basis computation. The new proposed algorithm computed a Gröbner basis of a degree 2 random system with 32 variables and 32 equations using 30 GB which was never done before by any known Gröbner bases solver.

Keywords

Algebraic cryptanalysis Gröbner basis Complexity HFE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, M., Bard, G.: M4RI – linear algebra over GF(2) (2008), http://m4ri.sagemath.org/index.html
  2. 2.
    Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry, Porto Conte, Alghero, Sardinia (Italy), May 27-June 1 (2005)Google Scholar
  3. 3.
    Courtois, N.T.: Experimental algebraic cryptanalysis of block ciphers (2007), http://www.cryptosystem.net/aes/toyciphers.html
  4. 4.
    Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt (2006)Google Scholar
  5. 5.
    Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.-P.: MutantXL. In: Proceedings of the 1st international conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008, pp. 16–22. LMIB (2008)Google Scholar
  6. 6.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Pure and Applied Algebra 139(1-3), 61–88 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gotaishi, M., Tsujii, S.: Hxl -a variant of xl algorithm computing gröbner bases. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An efficient algorithm for computing gröbner bases of zero-dimensional ideals. In: ICISC 2009. LNCS. Springer, Heidelberg (2009) (accepted for publication)Google Scholar
  9. 9.
    Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johannes Buchmann
    • 1
  • Daniel Cabarcas
    • 2
  • Jintai Ding
    • 3
  • Mohamed Saied Emam Mohamed
    • 1
  1. 1.FB InformatikTU DarmstadtDarmstadtGermany
  2. 2.Department of Mathematical SciencesUniversity of Cincinnati 
  3. 3.Department of Mathematical SciencesUniversity of Cincinnati, South China University of Technology 

Personalised recommendations