Advertisement

Parallel Shortest Lattice Vector Enumeration on Graphics Cards

  • Jens Hermans
  • Michael Schneider
  • Johannes Buchmann
  • Frederik Vercauteren
  • Bart Preneel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

In this paper we present an algorithm for parallel exhaustive search for short vectors in lattices. This algorithm can be applied to a wide range of parallel computing systems. To illustrate the algorithm, it was implemented on graphics cards using CUDA, a programming framework for NVIDIA graphics cards. We gain large speedups compared to previous serial CPU implementations. Our implementation is almost 5 times faster in high lattice dimensions.

Exhaustive search is one of the main building blocks for lattice basis reduction in cryptanalysis. Our work results in an advance in practical lattice reduction.

Keywords

Lattice reduction ENUM parallelization graphics cards CUDA exhaustive search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD97]
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 1997, pp. 284–293 (1997)Google Scholar
  2. [AKS01]
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 2001, pp. 601–610. ACM Press, New York (2001)CrossRefGoogle Scholar
  3. [AMD06]
    Advanced Micro Devices. ATI CTM Guide. Technical report (2006)Google Scholar
  4. [BCC+09]
    Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on graphics cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. [BL06]
    Buchmann, J., Ludwig, C.: Practical lattice basis sampling reduction. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 222–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [BW09]
    Backes, W., Wetzel, S.: Parallel lattice basis reduction using a multi-threaded Schnorr-Euchner LLL algorithm. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009 Parallel Processing. LNCS, vol. 5704, pp. 960–973. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [CIKL05]
    Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: Cryptographics: Secret key cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 334–350. Springer, Heidelberg (2005)Google Scholar
  8. [CNS99]
    Coupé, C., Nguyen, P.Q., Stern, J.: The effectiveness of lattice attacks against low exponent RSA. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 204–218. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. [CPS]
    Cadé, D., Pujol, X., Stehlé, D.: fpLLL - a floating point LLL implementation. Available at Damien Stehlé’s homepage at école normale supérieure de Lyon, http://perso.ens-lyon.fr/damien.stehle/english.html
  10. [Dag09]
    Dagdelen, Ö.: Parallelisierung von Gitterbasisreduktionen. Masters thesis, TU Darmstadt (2009)Google Scholar
  11. [Din02]
    Dinur, I.: Approximating SVP ∞  to within almost-polynomial factors is NP-hard. Theoretical Computer Science 285(1), 55–71 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [DN00]
    Durfee, G., Nguyen, P.Q.: Cryptanalysis of the RSA schemes with short secret exponent from Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 14–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. [Fle07]
    Fleissner, S.: GPU-Accelerated Montgomery Exponentiation. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 213–220. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [FP83]
    Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given norm. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 194–202. Springer, Heidelberg (1983)Google Scholar
  15. [GGH97]
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)Google Scholar
  16. [GM03]
    Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathematicum 2003 15(2), 165–189 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [GN08a]
    Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 2008, pp. 207–216. ACM Press, New York (2008)Google Scholar
  18. [GN08b]
    Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 2008, pp. 197–206. ACM Press, New York (2008)Google Scholar
  20. [HPS98]
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. [HS07]
    Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. [HT93]
    Heckler, C., Thiele, L.: A parallel lattice basis reduction for mesh-connected processor arrays and parallel complexity. In: IEEE Symposium on Parallel and Distributed Processing — SPDP, pp. 400–407. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  23. [HT98]
    Heckler, C., Thiele, L.: Complexity analysis of a parallel lattice basis reduction algorithm. SIAM J. Comput. 27(5), 1295–1302 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [HW07]
    Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Commodity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. [Jou93]
    Joux, A.: A fast parallel lattice reduction algorithm. In: Proceedings of the Second Gauss Symposium, pp. 1–15 (1993)Google Scholar
  26. [Kan83]
    Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 1983, pp. 193–206. ACM Press, New York (1983)Google Scholar
  27. [Kho05]
    Khot, S.: Hardness of approximating the shortest vector problem in lattices. J. ACM 52(5), 789–808 (2005)CrossRefMathSciNetGoogle Scholar
  28. [Koy04]
    Koy, H.: Primale-duale Segment-Reduktion (2004), http://www.mi.informatik.uni-frankfurt.de/research/papers.html
  29. [Len83]
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [LLL82]
    Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [LM08]
    Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. [LMPR08]
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. [LO85]
    Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal of the ACM 32(1), 229–246 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Lyu09]
    Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. [Man07]
    Manavski, S.A.: Cuda Compatible GPU as an Efficient Hardware Accelerator for AES Cryptography. In: IEEE International Conference on Signal Processing and Communications — ICSPC, pp. 65–68. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  36. [May10]
    May, A.: Using LLL-reduction for solving RSA and factorization problems. In: Nguyen, P.Q., Vallée, B. (eds.) The LLL algorithm, pp. 315–348. Springer, Heidelberg (2010)Google Scholar
  37. [MG02]
    Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  38. [MPS07]
    Moss, A., Page, D., Smart, N.P.: Toward Acceleration of RSA Using 3D Graphics Hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 364–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. [MV10]
    Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Proceedings of the Annual Symposium on Discrete Algorithms — SODA 2010 (2010)Google Scholar
  40. [NS05]
    Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)Google Scholar
  41. [NS06]
    Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. [NV08]
    Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. of Mathematical Cryptology 2(2) (2008)Google Scholar
  43. [Nvi07a]
    Nvidia. Compute Unified Device Architecture Programming Guide. Technical report (2007)Google Scholar
  44. [NVI07b]
    NVIDIA. CUBLAS Library (2007)Google Scholar
  45. [otCC09]
    1363 Working Group of the C/MM Committee. IEEE P1363.1 Standard Specification for Public-Key Cryptographic Techniques Based on Hard Problems over Lattices (2009), http://grouper.ieee.org/groups/1363/
  46. [Pei09a]
    Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/
  47. [Pei09b]
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 2009, pp. 333–342 (2009)Google Scholar
  48. [PS08]
    Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. [Puj08]
    Pujol, X.: Recherche efficace de vecteur court dans un réseau euclidien. Masters thesis, ENS Lyon (2008)Google Scholar
  50. [RR06]
    Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: Proceedings of the Annual Symposium on the Theory of Computing — STOC 2006, pp. 447–456. ACM Press, New York (2006)CrossRefGoogle Scholar
  51. [RV92]
    Roch, J.-L., Villard, G.: Parallel gcd and lattice basis reduction. In: Bougé, L., Robert, Y., Trystram, D., Cosnard, M. (eds.) CONPAR 1992 and VAPP 1992. LNCS, vol. 634, pp. 557–564. Springer, Heidelberg (1992)Google Scholar
  52. [Sch91]
    Schnorr, C.-P.: Factoring integers and computing discrete logarithms via diophantine approximations. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 281–293. Springer, Heidelberg (1991)Google Scholar
  53. [Sch03]
    Schnorr, C.-P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  54. [SE91]
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 68–85. Springer, Heidelberg (1991)Google Scholar
  55. [SG08]
    Szerwinski, R., Guneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  56. [SH95]
    Schnorr, C.-P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)Google Scholar
  57. [Sho]
    Shoup, V.: Number theory library (NTL) for C++, http://www.shoup.net/ntl/
  58. [SSTX09]
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  59. [Vil92]
    Villard, G.: Parallel lattice basis reduction. In: International Symposium on Symbolic and Algebraic Computation — ISSAC, pp. 269–277. ACM Press, New York (1992)Google Scholar
  60. [Wet98]
    Wetzel, S.: An efficient parallel block-reduction algorithm. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 323–337. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jens Hermans
    • 1
  • Michael Schneider
    • 2
  • Johannes Buchmann
    • 2
  • Frederik Vercauteren
    • 1
  • Bart Preneel
    • 1
  1. 1.ESAT/SCD-COSIC and IBBTKatholieke Universiteit Leuven 
  2. 2.Technische Universität Darmstadt 

Personalised recommendations