Advertisement

Fair Partially Blind Signatures

  • Markus Rückert
  • Dominique Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

It is well-known that blind signature schemes provide full anonymity for the receiving user. For many real-world applications, however, this leaves too much room for fraud. There are two generalizations of blind signature schemes that compensate this weakness: fair blind signatures and partially blind signatures. Fair blind signature schemes allow a trusted third party to revoke blindness in case of a dispute. In partially blind signature schemes, the signer retains a certain control over the signed message because signer and user have to agree on a specific part of the signed message.

In this work, we unify the previous well-studied models into a generalization, called fair partially blind signatures. We propose an instantiation that is secure in the standard model without any setup assumptions. With this construction, we also give a positive answer to the open question of whether fair blind signature schemes in the standard model exist.

Keywords

Blind signatures generic construction security model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fujisaki, E.: How to Date Blind Signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Okamoto, T.: Provably Secure Partially Blind Signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Ohkubo, M.: Provably Secure Fair Blind Signatures with Tight Revocation. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 583–602. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology — Crypto 1982, pp. 199–203. Plemum, New York (1983)Google Scholar
  8. 8.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two Improved Partially Blind Signature Schemes from Bilinear Pairings. Cryptology ePrint Archive, Report 2004/108 (2004), http://eprint.iacr.org/
  9. 9.
    Dwork, C., Naor, M.: Zaps and Their Applications. SIAM Journal on Computing 36(6), 1513–1543 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Feige, U.: Alternative Models for Zero-Knowledge Interactive Proofs. PhD Thesis. Weizmann Institute of Science. Dept. of Computer Science and Applied Mathematics (1990), http://www.wisdom.weizmann.ac.il/~feige
  11. 11.
    Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Reference String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in two Rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Fischlin, M., Schröder, D.: Security of Blind Signatures Under Aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Frankel, Y., Tsiounis, Y., Yung, M.: Indirect Discourse Proof: Achieving Efficient Fair Off-Line E-cash. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 286–300. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Fuchsbauer, G., Vergnaud, D.: Fair Blind Signatures without Random Oracles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 18–35. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-Secure Blind Signatures Without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Hufschmitt, E., Traoré, J.: Fair Blind Signatures Revisited. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 268–292. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Jakobsson, M., Yung, M.: Distributed “Magic ink” signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 450–464. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Lee, H.-W., Kim, T.-Y.: Message Recovery Fair Blind Signature. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 97–111. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Miyazaki, S., Sakurai, K.: A More Efficient Untraceable E-Cash System with Partially Blind Signatures Based on the Discrete Logarithm Problem. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 296–307. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair Blind Signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219. Springer, Heidelberg (1995)Google Scholar
  25. 25.
    von Solms, S.H., Naccache, D.: On blind signatures and perfect crimes. Computers & Security 11(6), 581–583 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Rückert
    • 1
  • Dominique Schröder
    • 1
  1. 1.TU DarmstadtGermany

Personalised recommendations