Quantum Readout of Physical Unclonable Functions

  • Boris Škorić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)


Physical Unclonable Functions (PUFs) are physical structures that are hard to clone and have a unique challenge-response behaviour. In this paper we propose a new security primitive, the quantum-readout PUF (QR-PUF): a classical PUF which is challenged using a quantum state, and whose response is also a quantum state. By the no-cloning property of unknown quantum states, attackers cannot intercept challenges or responses without noticeably disturbing the readout process. Thus, a verifier who sends quantum states as challenges and receives the correct quantum states back can be certain that he is probing a specific QR-PUF without disturbances, even in the QR-PUF is far away ‘in the field’ and under hostile control. For PUFs whose information content is not exceedingly large, all currently known PUF-based authentication and anti-counterfeiting schemes require trusted readout devices in the field. Our quantum readout scheme has no such requirement.

We show how the QR-PUF authentication can be interwoven with Quantum Key Exchange (QKE), leading to an authenticated QKE protocol between two parties with the special property that it requires no a priori secret shared by the two parties, and that the quantum channel is the authenticated channel, allowing for an unauthenticated classical channel.


Quantum State Entangle State Quantum Channel Authentication Protocol Challenge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Full version, available at Cryptology ePrint Archive, Report 2009/369 (2009)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buchanan, J.D.R., Cowburn, R.P., Jausovec, A., Petit, D., Seem, P., Xiong, G., Atkinson, D., Fenton, K., Allwood, D.A., Bryan, M.T.: Forgery: ‘fingerprinting’ documents and packaging. Nature, Brief Communications 436, 475 (2005)CrossRefGoogle Scholar
  5. 5.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. of Computer and System Sciences 18(2), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chong, C.N., Jiang, D., Zhang, J., Guo, L.: Anti-counterfeiting with a random pattern. In: SECURWARE 2008, pp. 146–153. IEEE, Los Alamitos (2008)Google Scholar
  7. 7.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    DeJean, G., Kirovski, D.: Radio frequency certificates of authenticity. In: IEEE Antenna and Propagation Symposium – URSI (2006)Google Scholar
  9. 9.
    Dieks, D.: Phys. Lett. A, 92, 271 (1982)Google Scholar
  10. 10.
    Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)CrossRefGoogle Scholar
  11. 11.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown functions. In: ACM Conf. on Computer and Communications Security – CCS 2002, November 2002, pp. 148–160 (2002)Google Scholar
  13. 13.
    Gottesman, D., Preskill, J.: Secure quantum key exchange using squeezed states, arXiv:quant-ph/0008046v2 (2000)Google Scholar
  14. 14.
    Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Hwang, W.-Y.: Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefGoogle Scholar
  16. 16.
    Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)CrossRefGoogle Scholar
  17. 17.
    Kirovski, D.: Toward an automated verification of certificates of authenticity. In: ACM Conference on Electronic Commerce, pp. 160–169. ACM, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The Butterfly PUF: Protecting IP on every FPGA. In: HOST 2008, pp. 67–70. IEEE, Los Alamitos (2008)Google Scholar
  19. 19.
    Kursawe, K., Sadeghi, A.-R., Schellekens, D., Škorić, B., Tuyls, P.: Reconfigurable physical unclonable functions. In: HOST 2009 (2009)Google Scholar
  20. 20.
    Matsukevich, D.N., Kuzmich, A.: Quantum state transfer between matter and light. Science 306(5696), 663–666 (2004)CrossRefGoogle Scholar
  21. 21.
    Pappu, R.: Physical One-Way Functions. PhD thesis, MIT (2001)Google Scholar
  22. 22.
    Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  23. 23.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (2005)Google Scholar
  24. 24.
    Shi, B.S., Li, J., Liu, J.M., Fan, X.F., Guo, G.C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes, and Cryptography 4, 369–380 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tuyls, P., Schrijen, G.J., Škorić, B., van Geloven, J., Verhaegh, R., Wolters, R.: Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Tuyls, P., Škorić, B., Kevenaar, T.: Security with Noisy Data: Private Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer, London (2007)zbMATHGoogle Scholar
  28. 28.
    Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-theoretic security analysis of physical uncloneable functions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Škorić, B.: On the entropy of keys derived from laser speckle; statistical properties of Gabor-transformed speckle. Journal of Optics A: Pure and Applied Optics 10(5), 055304–055316 (2008)CrossRefGoogle Scholar
  30. 30.
    Škorić, B., Bel, T., Blom, A.H.M., de Jong, B.R., Kretschman, H., Nellissen, A.J.M.: Randomized resonators as uniquely identifiable anti-counterfeiting tags. In: Secure Component and System Identification Workshop, Berlin (March 2008)Google Scholar
  31. 31.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boris Škorić
    • 1
  1. 1.Eindhoven University of Technology 

Personalised recommendations