Advertisement

Fair Blind Signatures without Random Oracles

  • Georg Fuchsbauer
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)

Abstract

A fair blind signature is a blind signature with revocable anonymity and unlinkability, i.e. an authority can link an issuing session to the resulting signature and trace a signature to the user who requested it. In this paper we first revisit the security model for fair blind signatures given by Hufschmitt and Traoré in 2007. We then give the first practical fair blind signature scheme with a security proof in the standard model. Our scheme satisfies a stronger variant of the Hufschmitt-Traoré model.

Keywords

Blind signatures revocable anonymity standard model Groth-Sahai proof system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AF96]
    Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. [AO01]
    Abe, M., Ohkubo, M.: Provably secure fair blind signatures with tight revocation. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 583–602. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [BB04]
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  4. [BBS04]
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  5. [BFI+10]
    Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.: Batch Groth-Sahai. Cryptology ePrint Archive, Report 2010/040 (2010), http://eprint.iacr.org/
  6. [BSZ05]
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)Google Scholar
  7. [CGT06]
    Canard, S., Gaud, M., Traoré, J.: Defeating malicious servers in a blind signatures based voting system. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 148–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [Cha83]
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York (1983)Google Scholar
  9. [Dam92]
    Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  10. [FPV09]
    Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size fair e-cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009)Google Scholar
  11. [Fuc09]
    Fuchsbauer, G.: Automorphic signatures in bilinear groups. Cryptology ePrint Archive, Report 2009/320 (2009), http://eprint.iacr.org/
  12. [FV10]
    Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. Cryptology ePrint Archive (2010), Report 2010/101, http://eprint.iacr.org/
  13. [GL07]
    Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. [Gro06]
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. [Gro07]
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. [Gro09]
    Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive, Report 2009/007 (2009), http://eprint.iacr.org/
  17. [GS08]
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. [GT03]
    Gaud, M., Traoré, J.: On the anonymity of fair offline e-cash systems. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 34–50. Springer, Heidelberg (2003)Google Scholar
  19. [HT07]
    Hufschmitt, E., Traoré, J.: Fair blind signatures revisited. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 268–292. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [Kil06]
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. [Nao03]
    Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)Google Scholar
  22. [Oka06]
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. [OMA+99]
    Ohkubo, M., Miura, F., Abe, M., Fujioka, A., Okamoto, T.: An improvement on a practical secret voting scheme. In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 225–234. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. [RS10]
    Rückert, M., Schröder, D.: Fair partially blind signatures. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 36–53. Springer, Heidelberg (2010)Google Scholar
  25. [SPC95]
    Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair blind signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Georg Fuchsbauer
    • 1
  • Damien Vergnaud
    • 1
  1. 1.LIENS - CNRS - INRIAÉcole normale supérieureParisFrance

Personalised recommendations