Information-Theoretically Secure Key-Insulated Multireceiver Authentication Codes

  • Takenobu Seito
  • Tadashi Aikawa
  • Junji Shikata
  • Tsutomu Matsumoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6055)


Exposing a secret-key is one of the most disastrous threats in cryptographic protocols. The key-insulated security is proposed with the aim of realizing the protection against such key-exposure problems. In this paper, we study key-insulated authentication schemes with information-theoretic security. More specifically, we focus on one of information-theoretically secure authentication, called multireceiver authentication codes, and we newly define a model and security notions of information-theoretically secure key-insulated multireceiver authentication codes (KI-MRA for short) based on the ideas of both computationally secure key-insulated signature schemes and multireceiver authentication-codes with information-theoretic setting. In addition, we show lower bounds of sizes of entities’ secret-keys. We also provide two kinds of constructions of KI-MRA: direct and generic constructions which are provably secure in our security definitions. It is shown that the direct construction meets the lower bounds of key-sizes with equality. Therefore, it turns out that our lower bounds are tight, and that the direct construction is optimal.


information-theoretic security key-insulated security multireceiver authentication-code unconditional security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.: Two remarks on public key cryptology. In: ACM CCCS (1997) (invited Lecture),
  2. 2.
    Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Canetti, R., Goldwasser, S.: An efficient threshold public-key cryptosystem secure against adaptive chosen-ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Canneti, R., Halevi, S., Katz, J.: A forward secure public key encryption scheme. J. Cryptology 20(3), 265–294 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/Multi-sender network security: efficient authenticated multicast/feedback. In: Proc. of IEEE Inforcom 1992, pp. 2045–2054 (1992)Google Scholar
  7. 7.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public-Key Cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Erdös, P., Frankl, P., Furedi, Z.: Families of finite sets in which no sets is covered by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect deception. Bell System Technical Journal 53, 405–425 (1974)MathSciNetGoogle Scholar
  11. 11.
    Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Information-Theoretically Secure Key Insulated Encryption: Models, Bounds and Constructions. IEICE Trans. Fundamentals E.87-A(10), 2521–2532 (2004)Google Scholar
  12. 12.
    Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signature schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Itkis, G., Reyzin, L.: SiBIR: Signer-Base Intrusion-Resilient Signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Johansson, T.: Further results on asymmetric authentication schemes. Information and Computation 151, 100–133 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Rivest, R.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer (1999) (manuscript),
  17. 17.
    Safavi-Naini, R., Wang, H.: Multireceiver authentication codes: model, bounds, constructions and extensions. Information and Computation 151, 148–172 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security Notions for Unconditionally Secure Signature Schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 434–449. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Compt. 26(5), 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen-ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Simmons, G.J.: Authentication theory/coding theory. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Takenobu Seito
    • 1
  • Tadashi Aikawa
    • 1
  • Junji Shikata
    • 1
  • Tsutomu Matsumoto
    • 1
  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityJapan

Personalised recommendations