Skip to main content

Computational Analysis of Loading–Unloading and Non-homogeneity Effects in Metallic Hollow Sphere Structures

  • Chapter
  • First Online:
Book cover Materials with Complex Behaviour

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 3))

  • 1559 Accesses

Abstract

Cellular metals can be applied in crash absorbers, heat exchangers and heat isolators, lightweight structures, acoustic and vibration damping. Cellular materials with a fairly uniform microstructure may be obtained with metallic hollow spheres welded or bonded. Such materials are known as MHSS (Metallic Hollow Sphere Structures). Crash absorbers, that act in compression and can be severely deformed, suffer severe deformation and some level of ductile damage can be expected. To consider this damage effect, the Gurson model is employed in this paper. Numerical simulation via finite elements is employed to study the mechanical behaviour of MHSS, focusing on two major aspects: first, the effect of previous compression and load reversal on voids nucleation; second, the consideration of nonuniform material properties of the metallic spheres. Numerical results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ashby, A. Evans, N. Fleck, J. Hutchinson, H. Wadley, Metal Foams: A Design Guide (Butterworth-Heinemann, Oxford, UK, 2000)

    Google Scholar 

  2. T. Fiedler, B. Sturm, A. Öchsner, J. Gracio, G. Kuhn, Modelling of the mechanical behaviour of adhesively bonded and sintered hollow-sphere structures. Mech. Comp. Mater. 42, 559–570 (2006)

    Article  Google Scholar 

  3. T. Fiedler, A. Öchsner, On the anisotropy of adhesively bonded metallic hollow sphere structures. Scr. Mater. 58, 695–698 (2008)

    Article  CAS  Google Scholar 

  4. T. Fiedler, Numerical and experimental investigation of hollow sphere structures in sandwich panels. Doctoral Thesis, Universidade de Aveiro, Portugal, 2007

    Google Scholar 

  5. B.F Oliveira, L.A.B. Cunda, A. Öchsner, G.J. Creus, Comparison Between RVE and full mesh approaches for the simulation of compression tests on cellular metals. Materialwiss Werkst. 39, 133–138 (2008)

    Article  CAS  Google Scholar 

  6. T.J. Lim, B. Smith, D.L. McDowell, Behaviour of a random hollow sphere metal foam. Acta. Materialia. 50, 2867–2879 (2002)

    Article  CAS  Google Scholar 

  7. B.F. Oliveira, L.A.B. Cunda, A. Öchsner, G.J. Creus Hollow sphere structures: a study of mechanical behaviour using numerical simulation. Materialwiss Werkst 40, 144–153 (2009)

    Article  Google Scholar 

  8. M. Kepets, T.J. Lu, A.P. Dowling, Modeling of the role of defects in sintered FeCrAlY foams. Acta. Mechanica. Sinica. 23, 511–529 (2007)

    Article  CAS  Google Scholar 

  9. U. Ramamurty, A. Paul, Variability in mechanical properties of a metal foam. Acta. Materialia. 52, 869–876 (2004)

    Article  CAS  Google Scholar 

  10. J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides (Dunod, Paris, 1988)

    Google Scholar 

  11. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media. ASME. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  12. V Tvergaard, Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)

    Article  Google Scholar 

  13. V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982)

    Google Scholar 

  14. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica 32, 157–169 (1984)

    Article  Google Scholar 

  15. J. Koplik, A. Needleman, (1988) Void growth and coalescence in porous plastic solids. Int. J. Solids. Struct. 24, 835–853 (1988)

    Article  Google Scholar 

  16. ABAQUS Theory Manual, Version 5.2 (Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI, 1992)

    Google Scholar 

  17. L.A.B. Cunda, G.J. Creus, A note on damage analyses in processe with nonmonotonic loading. Comput. Model. Simul. Eng. 4, 300–303 (1999)

    Google Scholar 

  18. V. Tvergaard, (1982) Material failure by void coalescence in localized shear bands. Int. J. Solids. Struct. 18, 659–672 (1982)

    Article  Google Scholar 

  19. C.C. Chu, A. Needleman, (1980) Void nucleation effects in biaxially stretched sheets. ASME J. Eng. Mater. Technol. 102, 249–256 (1980)

    Article  Google Scholar 

Download references

Acknowledgments

Moises H. Krützmann helped in the computational modeling stage. The financial support of CAPES, CNPq (Projects 572851/2008-1, 307787/2009-5, 480237/2007-7, 301068/2006-2) and PROPESQ/UFRGS is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branca F. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oliveira, B.F., da Cunda, L.A., Öchsner, A., Creus, G.J. (2010). Computational Analysis of Loading–Unloading and Non-homogeneity Effects in Metallic Hollow Sphere Structures. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Materials with Complex Behaviour. Advanced Structured Materials, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12667-3_6

Download citation

Publish with us

Policies and ethics