Skip to main content

Application of Parallel Processing to the Simulation of Heart Mechanics

  • Conference paper
High Performance Computing Systems and Applications (HPCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

Abstract

Simulations of the mechanics of the left ventricle of the heart with fluid-structure interaction benefit greatly from the parallel processing power of a high performance computing cluster, such as HPCVL. The objective of this paper is to describe the computational requirements for our simulations. Results of parallelization studies show that, as expected, increasing the number of threads per job reduces the total wall clock time for the simulations. Further, the speed-up factor increases with increasing problem size. Comparative simulations with different computational meshes and time steps show that our numerical solutions are nearly independent of the mesh density in the solid wall (myocardium) and the time step duration. The results of these tests allow our simulations to continue with the confidence that we are optimizing our computational resources while minimizing errors due to choices in spatial or temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nash, M.P., Hunter, P.J.: Computational Mechanics of the Heart. J. Elasticity 61, 113–41 (2000)

    Google Scholar 

  2. Long, Q., Merrifield, R., Xu, X.Y., Kilner, P., Firmin, D.N., Yang, G.-Z.: Subject- Specific Computational Simulation of Left Ventricular Flow Based on Magnetic Resonance Imaging. Proc. IMechE Part H J. Eng. Med. 222, 475–485 (2008)

    Article  Google Scholar 

  3. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical Simulation of the Electromechanical Activity of the Heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Peskin, C.S., McQueen, D.M.: Fluid Dynamics of the Heart and its Valves. In: Othmer, H.G., Adler, F.R., Lewis, M.A., Dallon, J.C. (eds.) Case Studies in Mathematical Modeling – Ecology, Physiology, and Cell Biology, pp. 309–337. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  5. Watanabe, H., Sugiura, S., Kafuku, H., Hisada, T.: Multiphysics Simulation of Left Ventricular Filling Dynamics using Fluid-Structure Interaction Finite Element Method. Biophys. J. 87, 2074–2085 (2004)

    Article  Google Scholar 

  6. Ge, L., Ratcliffe, M.: The Use of Computational Flow Modeling (CFD) to Determine the Effect of Left Ventricular Shape on Blood Flow in the Left Ventricle. Ann. Thorac. Surg. 87, 993–994 (2009)

    Article  Google Scholar 

  7. Doyle, M.G., Tavoularis, S., Bourgault, Y.: Adaptation of a Rabbit Myocardium Material Model for Use in a Canine Left Ventricle Simulation Study. J. Biomech. Eng. (in press, 2010)

    Google Scholar 

  8. Huyghe, J.M., Van Campen, D.H., Art, T., Heethaar, R.M.: A Two-Phase Finite Element Model of the Diastolic Left Ventricle. J. Biomech. 24, 527–538 (1991)

    Article  Google Scholar 

  9. Streeter Jr., D.D., Spotnitz, H.M., Patel, D.P., Ross Jr., J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle During Diastole and Systole. Circ. Res. 24, 339–347 (1969)

    Google Scholar 

  10. Nielsen, P.M.F., LeGrice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical Model of Geometry and Fibrous Structure of the Heart. Am. J. Physiol. 260, H1365–H1378 (1991)

    Google Scholar 

  11. Streeter Jr., D.D., Hanna, W.T.: Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium: I. Cavity and Wall Geometry. Circ. Res. 33, 639–655 (1973)

    Google Scholar 

  12. Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method. Isothermal Laminar Flow, vol. 2. John Wiley and Son, Ltd., Chichester (1998)

    MATH  Google Scholar 

  13. ADINA R & D, Inc.: ADINA Theory and Modeling Guide Volume I: ADINA. ADINA R & D, Inc., Watertown, MA, USA (2008)

    Google Scholar 

  14. Lin, D.H.S., Yin, F.C.P.: A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus. J. Biomech. Eng. 120, 504–517 (1998)

    Article  Google Scholar 

  15. ADINA R & D, Inc.: ADINA Theory and Modeling Guide Volume III: ADINA CFD & FSI. ADINA R & D, Inc., Watertown, MA, USA (2008)

    Google Scholar 

  16. Zhang, H., Bathe, K.-J.: Direct and Iterative Computing of Fluid Flows Fully Coupled With Structures. In: Bathe, K.-J. (ed.) Computational Fluid and Solid Mechanics, pp. 1440–1443. Elsevier Science Ltd., Oxford (2001)

    Chapter  Google Scholar 

  17. Sabbah, H.N., Stein, P.D.: Pressure-Diameter Relations During Early Diastole in Dogs: Incompatibility with the Concept of Passive Left Ventricular Filling. Circ. Res. 45, 357–365 (1981)

    Google Scholar 

  18. Omens, J.H., May, K.D., McCulloch, A.D.: Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle. Am. J. Physiol. 261, H918–H928 (1991)

    Google Scholar 

  19. Holmes, J.W.: Determinants of Left Ventricular Shape Change during Filling. J. Biomech. Eng. 126, 98–103 (2004)

    Article  Google Scholar 

  20. Yin, F.C.P., Chan, C.C.H., Judd, R.M.: Compressibility of Perfused Passive Myocardium. Am. J. Physiol. 271, H1864–H1870 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doyle, M.G., Tavoularis, S., Bourgault, Y. (2010). Application of Parallel Processing to the Simulation of Heart Mechanics. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics