Skip to main content

Nonlinear Time-Dependent Density Functional Theory Studies of Ionization in CO2 and N2 by Intense Laser Pulses and Molecular Orbital Reconstruction

  • Conference paper
High Performance Computing Systems and Applications (HPCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

  • 1372 Accesses

Abstract

Time-dependent density functional theory, TDDFT, studies of the ionization of CO2 and N2, by intense laser pulses peak intensities (3.50×1014, 1.40×1015, 2.99×1015 and 5.59×1015 W/cm2) at 800 nm (ω = 0.0584 a.u.) are presented in the nonlinear nonpertubative regime using the LB94 potential which reproduces the ionization potential of our systems more accurately, without significant increase in computational costs over a local-density approximation. Special emphasis is placed on elucidating molecular orbital (MO) orientation and various peak intensities effects on the ionization processes. The results reveal that molecular orbital ionizations are strongly sensitive to their symmetry (MO shape), the induced dipole coupling between molecular orbitals, and the laser intensities. Notably, we found that with a proper choice of the laser intensity (3.5×1014 W/cm2), the sensitivity is strong enough so that the nature and symmetry of the highest occupied molecular orbital can be directly probed and visualized from the angular dependence of laser induced ionization. At higher intensities, ionization is found to occur also from inner orbitals, thus complicating imaging of simple orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kienberger, R., et al.: Nature 427, 817 (2004)

    Google Scholar 

  2. Corkum, P.B., Krausz, F.: Nat. Phys. 3, 381 (2007)

    Google Scholar 

  3. Chu, X., Chu, S.: Phys. Rev. A 70, 061402 (2004); Dundas, D., Rost, J.M.: Phys. Rev. A 71, 013421 (2005)

    Google Scholar 

  4. Stapelfeldt, H., Seideman, T.: Rev. Mod. Phys. 75, 543 (2003)

    Google Scholar 

  5. Itatani, J., et al.: Nature (London) 432, 867 (2004)

    Google Scholar 

  6. Kamta, G.L., Bandrauk, A.D.: Phys. Rev. A 70, 011404 (2004); Kamta, G.L., Bandrauk, A.D.: Phys. Rev. A 71, 053407 (2005); Kamta, G.L., Bandrauk, A.D.: Laser Phys 15, 502 (2005)

    Google Scholar 

  7. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Google Scholar 

  8. Kohn, W., Sham, L.: Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  9. Ullrich, C.A., Bandrauk, A.D.: Time-Dependent Density Functional Theory. Burke, K., Marques, M. (eds.), p. 357. Springer, New York (2006)

    Google Scholar 

  10. Casida, M.E.: Seminario, J.M. (ed.) Recent Developments and Applications in Modern Density-Functional Theory, p. 391. Elsevier, Amsterdam (1996); Furche, F.: J. Chem. Phys. 114, 5982 (2001)

    Google Scholar 

  11. Kümmel, S., Kronik, L.: Rev. Mod. Phys. 80, 3 (2008)

    Google Scholar 

  12. Zhang, Y., Yang, W.: J. Chem. Phys. 109, 2604 (1998); Dobbs, K.D., Dixon, D.A.: J. Phys. Chem. 98, 12584 (1994)

    Google Scholar 

  13. Garza, J., Nichols, J.A., Dixon, D.A.: J. Chem. Phys. 112, 7880 (2000)

    Google Scholar 

  14. Penka, E.F., Bandrauk, A.D.: Can. J. Chem. (accepted, 2009)

    Google Scholar 

  15. Pavičić, D., et al.: Phys. Rev. Lett. 98, 243001 (2007)

    Google Scholar 

  16. Alnaser, A.S., et al.: Phys. Rev. A 71, 031403 (2005)

    Google Scholar 

  17. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  18. Runge, E., Gross, E.K.U.: Phys. Rev. Lett. 52, 997 (1984)

    Google Scholar 

  19. Nguyen, H.S., Bandrauk, A.D., Ullrich, C.A.: Phys. Rev. A 69, 063415 (2004)

    Google Scholar 

  20. Koopmans, T.: Physica 1, 104 (1933); Mulliken, R.S.: Phys. Rev. 74, 736 (1948)

    Google Scholar 

  21. Szabo, A., Ostlund, N.S.: Introduction to Advanced Electronic Structure Theory (Paperback 1996)

    Google Scholar 

  22. Janak, J.F.: Phys. Rev. B 18, 7165 (1078)

    Google Scholar 

  23. Lee, C., Yang, W., Parr, R.G.: Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  24. Becke, A.D.: J. Chem. Phys. 104, 1040 (1996); Becke, A.D.: J. Chem. Phys. 107, 8554 (1997)

    Google Scholar 

  25. Leeuwen, R.V., Baerends, E.J.: Phys. Rev. A 49, 2421 (1994)

    Google Scholar 

  26. Umezawa, N.: Phys. Rev. A 74, 032505 (2006)

    Google Scholar 

  27. Gisbergen, S.J.A.v., Snijders, J.G., Baerends, E.J.: J. Chem. Phys. Lett. 109 (1998); Banerjee, A., Harbola, M.K.: Phys. Rev. A 60, 3599 (1999); Stener, M., Decleva, P.: J. Chem. Phys. 112, 10871 (2000)

    Google Scholar 

  28. Perdew, J.P., Zunger, A.: Phys. Rev. B 23, 5048 (1981)

    Google Scholar 

  29. Sharp, R.T., Horton, G.K.: Phys. Rev. 90, 317 (1953); Talman, J.D., Shadwick, W.F.: Phys. Rev. A 14, 36 (1976)

    Google Scholar 

  30. Krieger, J.B., Li, Y., Iafrate, G.J.: Phys. Rev. A 45, 101 (1992); Krieger, J.B., Li, Y., Iafrate, G.J.: Phys. Rev. A 46, 5453 (1992)

    Google Scholar 

  31. Krieger, J.B., Li, Y., Iafrate, G.J.: Phys. Rev. A 47, 165 (1993)

    Google Scholar 

  32. Grabo, T., Gross, E.K.U.: Chem. Phys. Lett. 240, 141 (1995); Grabo, T., Gross, E.K.U.: Int. J. Quantum Chem. 64, 95 (1997); Stowasser, R., Hoffmann, R.: J. Am. Chem. Soc. 121, 3414 (1999)

    Google Scholar 

  33. Troullier, N., Martins, J.L.: Solid State Commun. 74, 13 (1990); Troullier, N., Martins, J.L.: Phys. Rev. B 43, 1993 (1991); Castro, A., et al.: Phys. Stat. Sol. B 243, 2465 (2006)

    Google Scholar 

  34. in Université de Sherbrooke (Sherbrooke), https://rqchp.ca/page/0/FR

  35. Brabec, T., Krausz, F.: Rev. Mod. Phys. 72, 545 (2000)

    Google Scholar 

  36. Crank, J., Nicolson, P.: Proc. Camb. Phil. Soc. 43, 50 (1947)

    Google Scholar 

  37. Fevens, T., Jiang, H.: SIAM J. Sci. Comput. 21, 255 (1999); Bandrauk, A.D., Lu, H.Z.: Phys. Rev. A 72, 023408 (2005)

    Google Scholar 

  38. Jiang, H., Novak, I.: J. Mol. Struct. 645(2-3), 177 (2003); Hubert, K., Herzberg, G.: Molecular Spectra and Molecular Structure. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  39. Lias, S.G.: In Ionization Energy Evaluation in NIST Chemistry WebBook, NIST Standard Reference Database. Linstrom, W.G.M.P.J. (ed.) National Institute of Standards and Technology, http://webbook.nist.gov , Gaithersburg MD 20899, vol. 69 (March 2003); Kikoin, I.K.: Tables of Physical Quantities (in Russian). Atomizdat, Moscow (1976)

  40. Vosko, S.H., Wilk, L., Nusair, M.: Canadian Journal of Physics 58, 1200 (1980)

    Google Scholar 

  41. Perdew, J.P., et al.: Physical Review B 46, 6671 (1992)

    Google Scholar 

  42. Cohen, A.J., Handy, N.C.: Molecular Physics 99, 607 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Penka Fowe, E., Bandrauk, A.D. (2010). Nonlinear Time-Dependent Density Functional Theory Studies of Ionization in CO2 and N2 by Intense Laser Pulses and Molecular Orbital Reconstruction. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics