Skip to main content

Catalytic Activity and Adsorption Property

  • Chapter
  • First Online:
Characterization and Design of Zeolite Catalysts

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 141))

  • 1936 Accesses

Abstract

Functions of zeolites as catalysts and adsorbents are related with the observed acidic properties. The turnover frequency and activation energy of alkane cracking depend on the ammonia desorption heat. Desorption heat of toluene on Na-zeolite is related with the ammonia adsorption heat of corresponding H-zeolite. Highly active catalysts for Friedel–Crafts alkylation (Ga/MCM-41) and amination of phenol (Ga/ZSM-5) are found based on the ammonia TPD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.O. Haag, R.M. Dessau, in Proceedings of the 8th International Congress on Catalysis, vol. 2, (Varlag-Chemie, Weinheim, 1984), pp. 305–316

    Google Scholar 

  2. S.J. Collins, P.J. O’Malley, J. Catal. 153, 94 (1995)

    Article  CAS  Google Scholar 

  3. C. Seitz, A.L.L. East, J. Phys. Chem. A 106, 11653 (2002)

    Article  CAS  Google Scholar 

  4. M. Boronat, A. Corma, Appl. Catal. A Gen. 336, 2 (2008)

    Article  CAS  Google Scholar 

  5. T. Hashiba, D. Hayashi, N. Katada, M. Niwa, Catal. Today 97, 35 (2004)

    Article  CAS  Google Scholar 

  6. N. Katada, K. Suzuki, T. Noda, W. Miyatani, F. Taniguchi, M. Niwa, Appl. Catal. A Gen. 373, 208 (2010)

    Article  CAS  Google Scholar 

  7. B.A. Williams, S.M. Babitz, J.T. Miller, R.Q. Snurr, H.H. Kung, Appl. Catal. A Gen. 177, 161 (1999)

    Article  CAS  Google Scholar 

  8. M. Kuehne, H.H. Kung, J.T. Miller, J. Catal. 171, 293 (1997)

    Article  CAS  Google Scholar 

  9. J.A. Van Bokhoven, M. Tromp, D.C. Koningsberger, J.T. Miller, J.A.Z. Pieterse, J.A. Lercher, B.A. Williams, H.H. Kung, J. Catal. 202, 129 (2001)

    Article  Google Scholar 

  10. N. Katada, Y. Kageyama, K. Takahara, T. Kanai, H.A. Begum, M. Niwa, J. Mol. Catal. A Chem. 211, 119 (2004)

    Article  CAS  Google Scholar 

  11. S. Kotrel, M.P. Rosynek, J.H. Lunsford, J. Phys. Chem. B 103, 818 (1999)

    Article  CAS  Google Scholar 

  12. F. Eder, J.A. Lercher, J. Phys. Chem. B 101, 1273 (1997)

    Article  CAS  Google Scholar 

  13. G. Sastre, A. Corma, J. Mol. Catal. A Chem. 305, 3 (2009)

    Article  CAS  Google Scholar 

  14. N.F. Hall, J. Am. Chem. Soc. 52, 5115 (1930)

    Article  CAS  Google Scholar 

  15. L.P. Hammet, A.J. Deyrup, J. Am. Chem. Soc. 54, 2721 (1932)

    Article  Google Scholar 

  16. M. Niwa, N. Katada, M. Sawa, Y. Murakami, J. Phys. Chem. 99, 8812 (1995)

    Article  CAS  Google Scholar 

  17. N. Naito, N. Katada, M. Niwa, J. Phys. Chem. B 103, 7206 (1999)

    Article  CAS  Google Scholar 

  18. N. Katada, J. Endo, K. Notsu, N. Yasunobu, N. Naito, M. Niwa, J. Phys. Chem. B 104, 10321 (2000)

    Article  CAS  Google Scholar 

  19. M. Niwa, K. Suzuki, N. Katada, T. Kanougi, T. Atoguchi, J. Phys. Chem. B 109, 18749 (2005)

    Article  CAS  Google Scholar 

  20. N. Sivasankar, S. Vasudevan, J. Phys. Chem. B 108, 11585 (2004)

    Article  CAS  Google Scholar 

  21. V.R. Choudhary, K.R. Srinivasan A.P. Singh Zeolites 10, 16 (1990)

    Google Scholar 

  22. T. Masuda, Y. Fujitaka, T. Nishida, K. Hashimoto, Microporous Mesoporous Mater. 23, 157 (1998)

    Article  CAS  Google Scholar 

  23. M. Kato, K. Itabashi, A. Matsumoto, K. Tsutsumi, J. Phys. Chem. B 107, 1788 (2003)

    Article  CAS  Google Scholar 

  24. K.F. Czaplewski, T.L. Reitz, Y.J. Kim, R.Q. Snurr, Microporous Mesoporous Mater. 56, 55 (2002)

    Article  CAS  Google Scholar 

  25. D.S. Lafyatis, G.P. Ansell, S.C. Bennet, J.C. Frost, P.J. Millington, R.R. Rajaram, A.P. Walker, T.H. Ballinger, Appl. Catal. B Environ. 18, 123 (1998)

    Article  CAS  Google Scholar 

  26. R. Yoshimoto, T. Ninomiya, K. Okumura, M. Niwa, Appl. Catal. B Environ. 75, 175 (2007)

    Article  CAS  Google Scholar 

  27. S.-W. Baek, J.-R. Kim, S.-K. Ihm, Catal. Today 93, 575 (2004)

    Article  Google Scholar 

  28. R. Yoshimoto, K, Hara, K. Okumura, N. Katada, M. Niwa, J. Phys. Chem. C 111, 1474 (2007)

    Google Scholar 

  29. G.M. Barrow, Physical Chemistry, 5th edn. (McGraw Hill New York, 1988)

    Google Scholar 

  30. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990)

    Article  CAS  Google Scholar 

  31. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  32. R. Ryoo, J.M. Kim, J. Chem. Soc. Chem. Commun. 711 (1995)

    Google Scholar 

  33. K. Okumura, K. Nishigaki, N. Niwa, Microporous Mesoporous Mater. 44–45, 509 (2001)

    Article  Google Scholar 

  34. K. Okumura, K. Yamashita, K. Yamada, M. Niwa, J. Catal. 245, 75 (2007)

    Article  CAS  Google Scholar 

  35. K. Okumura, S. Ito, M. Yonekawa, A. Nakashima, M. Niwa, Top. Catal. 52, 649 (2009)

    Article  CAS  Google Scholar 

  36. M. Yasuhara, F. Matsunaga, Eur. Patent 321275 A2, 1989

    Google Scholar 

  37. A.A. Schutz, L.A. Cullo, PCT Patent WO9305010 A1, 1993

    Google Scholar 

  38. C.D. Chang, W.H. Lang, Eur. Patent 62542 A1, 1982

    Google Scholar 

  39. N. Katada, S. Iijima, H. Igi, M. Niwa, Stud. Surf. Sci. Catal. 105, 1227 (1997)

    Article  Google Scholar 

  40. N. Katada, S. Kuroda, M. Niwa, Appl. Catal. A Gen. 180, L1 (1999)

    Article  CAS  Google Scholar 

  41. T. Miyamoto, N. Katada, J.-H. Kim, M. Niwa, J. Phys. Chem. B 102, 6738 (1998)

    Article  CAS  Google Scholar 

  42. N. Katada, T. Doi, T. Shinmura, S. Kuroda, N. Niwa, Stud. Surf. Sci. Catal. 145, 197 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Niwa .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niwa, M., Katada, N., Okumura, K. (2010). Catalytic Activity and Adsorption Property. In: Characterization and Design of Zeolite Catalysts. Springer Series in Materials Science, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12620-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12620-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12619-2

  • Online ISBN: 978-3-642-12620-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics