Skip to main content

Stable Extracellular DNA: A Novel Substrate for Genetic Engineering that Mimics Horizontal Gene Transfer in Nature

  • Chapter
  • First Online:
Extracellular Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 25))

Abstract

Molecular biology technology generally requires naked DNA purified in a test tube. However, extracellular DNA in the natural environment can contribute to breeding and growth as nutrition or genetic information. Transfer and maintenance of DNA is called horizontal gene transfer (HGT), a mechanism that has certainly played a role during evolution. The naked DNA received by particular microbes through natural transformation processes would almost certainly be extracellular. However, this form of transformation has been rarely studied compared with the other two major mechanisms of HGT: transduction and conjugation.

In this chapter, we present our recent discovery that plasmid DNA released from lysed Escherichia coli remains surprisingly stable in the environment. This extracellular DNA, of up to 100 kb and possibly larger, can undergo an HGT-like process into a recipient bacterium capable of natural transformation.

This form of DNA transfer, mimicking HGT, could facilitate the delivery of engineered genes without the need for biochemical purification, and permit experimental research into the mechanisms of HGT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

amp :

Ampicillin

BAC:

Bacterial artificial chromosome

bla :

β-Lactamase gene

bp:

Base pair(s)

cat :

Chloramphenicol acetyl transferase gene

ccc:

Covalently closed circular

cI:

cI Repressor gene

CMM:

Culture mix method

GFP:

Green fluorescent protein

GpBR:

Genomic pBR322 sequence

HGT:

Horizontal gene transfer

kb:

Kilobases

kbp:

Kilobase pairs

km :

Kanamycin resistance gene

tet :

Tetracycline resistance determinant gene

References

  • Arber W (1983) A beginners guide to lambda biology. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA (eds) Lambda II. Cold Spring Harbor Laboratory Press, New York, pp 381–394

    Google Scholar 

  • Baur B, Hanselman K, Schlimme W, Jenni W (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678

    PubMed  CAS  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  PubMed  CAS  Google Scholar 

  • Cérémonie H, Buret F, Simonet P, Vogel TM (2006) Natural electrotransformation of lightning-competent Pseudomonas sp. strain N3 in artificial soil microcosms. Appl Environ Microbiol 72:2385–2389

    Article  PubMed  Google Scholar 

  • Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460

    Article  PubMed  CAS  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, Desantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104

    Article  Google Scholar 

  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequence in the recipient cells. FEMS Microbiol Lett 19:211–215

    Article  Google Scholar 

  • Demanéche S, Kay E, Gourbiére F, Simonet P (2001a) Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl Environ Microbiol 67:2617–2621

    Article  PubMed  Google Scholar 

  • Demanéche S, Bertolla F, Buret F, Nalin R, Sailland A, Auriol P, Auriol P, Vogel TM, Simonet P (2001b) Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl Environ Microbiol 67:3440–3444

    Article  PubMed  Google Scholar 

  • Dubnau D (1991a) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424

    PubMed  CAS  Google Scholar 

  • Dubnau D (1991b) The regulation of genetic competence in Bacillus subtilis. Mol Microbiol 5:11–18

    Article  PubMed  CAS  Google Scholar 

  • Frischer ME, Stewart GJ, Paul JH (1994) Plasmid transfer to indigenous marine bacterial populations by natural transformation. FEMS Microbiol Ecol 15:127–136

    Article  CAS  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archael complete genomes. Genome Res 10:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecule up to several hundred kilobases. Nat Methods 6:343–345

    Article  PubMed  CAS  Google Scholar 

  • Hamilton HL, Dominguez NM, Schwartz KJ, Hackett KT, Dillard JP (2005) Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 55:1704–1721

    Article  PubMed  CAS  Google Scholar 

  • Ippen-Ihler K (1990) Bacterial conjugation. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 33–72

    Google Scholar 

  • Itaya M (1993) Integration of repeated sequences (pBR322) in the Bacillus subtilis 168 chromosome without affecting the genome structure. Mol Gen Genet 241:287–297

    Article  PubMed  CAS  Google Scholar 

  • Itaya M (1999) Genetic transfer of large DNA inserts to designated loci of the Bacillus subtilis 168 genome. J Bacteriol 181:1045–1048

    PubMed  CAS  Google Scholar 

  • Itaya M (2009) Recombinant genomes: novel resources for systems biology and synthetic biology. In: Fu P, Panke S (eds) Systems biology and synthetic biology. John Wiley, New Jersey, pp 155–194

    Chapter  Google Scholar 

  • Itaya M, Kaneko S (2010) Integration of stable extracellular DNA released from Escherichia coli into the Bacillus subtilis genome vector by culture mix method. Nucleic Acids Res 38:2551–2557

    Google Scholar 

  • Itaya M, Tsuge K, Koizumi M, Fujita K (2005) Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 102:15971–15976

    Article  PubMed  CAS  Google Scholar 

  • Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 5:41–43

    Article  PubMed  CAS  Google Scholar 

  • Johnsborg O, Hávarstein LS (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627–642

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tool of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Itaya M (2010) Designed horizontal transfer of stable giant DNA released from Escherichia coli. J. Biochem: 147:819–822

    Google Scholar 

  • Kaneko S, Tsuge K, Takeuchi T, Itaya M (2003) Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector. Nucleic Acids Res 31:e112

    Article  PubMed  Google Scholar 

  • Kaneko S, Akioka M, Tsuge K, Itaya M (2005) DNA shuttling between plasmid vectors and a genome vector: Systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM) vector. J Mol Biol 349:1036–1044

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Takeuchi T, Itaya M (2009) Genetic connection of two contiguous bacterial artificial chromosomes using homologous recombination in Bacillus subtilis genome vector. J Biotechnol 139:211–213

    Article  PubMed  CAS  Google Scholar 

  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58:1930–1939

    PubMed  CAS  Google Scholar 

  • Kokjohn TA (1989) Transduction: mechanism and potential for gene transfer in the environment. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 73–97

    Google Scholar 

  • Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison CA III, Smith HO, Venter JC, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1988) Impact of mineral surfaces on gene transfer by transformation in natural bacterial environments. In: Klingmüller W (ed) Risk assessment for deliberate releases. Springer, Berlin, pp 110–119

    Chapter  Google Scholar 

  • Lorenz MG, Wackernagel W (1992) DNA binding to various clay minerals and retarded enzymatic degradation of DNA in a sand/clay microcosm. In: Gauthier MJ (ed) Gene transfers and environment. Springer, Berlin, pp 103–113

    Chapter  Google Scholar 

  • Lorenz MG, Wackernagel W (1993) Transformation as a mechanism for bacterial gene transfer in soil and sediment – studies with a sand/clay microcosm and the cyanobacterium Synechocystis OL50. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, pp 325–330

    Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Murayama R, Akanuma G, Makino Y, Nanamiya H, Kawamura F (2004) Spontaneous transformation and its use for genetic mapping in Bacillus subtilis. Biosci Biotechnol Biochem 68:1672–1680

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawerence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Ohshima H, Tsuge K, Itaya M (2003) Far different levels of gene expression provided by an oriented cloning system in Bacillus subtilis and Escherichia coli. FEMS Microbiol Lett 221:125–130

    Article  PubMed  CAS  Google Scholar 

  • Paul JH, Thurmond JM, Frischer ME, Cannon JP (1992) Intergeneric natural plasmid transformation between E. coli and a marine Vibrio species. Mol Ecol 1:37–46

    Article  PubMed  CAS  Google Scholar 

  • Peget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–117

    Article  Google Scholar 

  • Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92

    Article  PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol 57:1057–1061

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1993) Plasmid DNA in a groundwater aquifer microcosm – adsorption, DNAase resistance and natural genetic transformation of Bacillus subtilis. Mol Ecol 2:171–181

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EC, Maniatis T (1989) In: Ford N, Nolan C (eds) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 1.21–1.52

    Google Scholar 

  • Smith HO, Danner DB, Deich RA (1981) Genetic transformation. Annu Rev Biochem 50:41–68

    Article  PubMed  CAS  Google Scholar 

  • Stone BJ, Kwaik YA (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–1402

    PubMed  CAS  Google Scholar 

  • Stotzky G (1989) Gene transfer among bacteria in soil. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 165–222

    Google Scholar 

  • Suzuki H, Daimon M, Awano T, Umekage S, Tanaka T, Kikuchi Y (2009) Characterization of extracellular DNA production and flocculation of the marine photosynthetic bacterium Rhodovulum sulfidophilum. Appl Microbiol Biotechnol 84:349–356

    Article  PubMed  CAS  Google Scholar 

  • Tønjum T, Bøvre K, Juni E (1995) Fastidious Gram-negative bacteria: Meeting the diagnostic challenge with nucleic acid analysis. APMIS 103:609–627

    Article  PubMed  Google Scholar 

  • Tsuge K, Matsui K, Itaya M (2007) Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol 129:592–603

    Article  PubMed  CAS  Google Scholar 

  • Yonemura I, Nakada K, Sato A, Hayashi J, Fujita K, Kaneko S, Itaya M (2007) Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene 391:171–177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. F. Maruyama of the Tokyo Institute of Technology for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Itaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaneko, S., Itaya, M. (2010). Stable Extracellular DNA: A Novel Substrate for Genetic Engineering that Mimics Horizontal Gene Transfer in Nature. In: Kikuchi, Y., Rykova, E. (eds) Extracellular Nucleic Acids. Nucleic Acids and Molecular Biology, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12617-8_4

Download citation

Publish with us

Policies and ethics