Skip to main content

Model Equations: Parameter Estimation

  • Chapter
  • First Online:
Extracting Knowledge From Time Series

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 2070 Accesses

Abstract

Motions and processes observed in nature are extremely diverse and complex. Therefore, opportunities to model them with explicit functions of time are rather restricted. Much greater potential is expected from difference and differential equations (Sects. 3.3, 3.5 and 3.6). Even a simple one-dimensional map with a quadratic maximum is capable of demonstrating chaotic behaviour (Sect. 6.2). Such model equations in contrast to explicit functions of time describe how a future state of an object depends on its current state or how velocity of the state change depends on the state itself. However, a technology for the construction of these more sophisticated models, including parameter estimation and selection of approximating functions, is basically the same. A simple example: construction of a one-dimensional map \(\eta_{n+1}=f(\eta_n,\textbf{c})\) differs from obtaining an explicit temporal dependence \(\eta=f(t,\textbf{c})\) only in that one needs to draw a curve through experimental data points on the plane \((\eta_n,\eta_{n+1})\) (Fig. 8.1a–c) rather than on the plane \((t,\eta) \) (Fig. 7.1). To construct model ODEs \({{{\mathrm{d}}{\mathbf{x}}} \mathord{\left/ {\vphantom {{{\mathrm{d}}{\mathbf{x}}} {{\mathrm{d}}t}}} \right. \kern-\nulldelimiterspace} {{\mathrm{d}}t}} = {\mathbf{f}}({\mathbf{x}},{\mathbf{c}})\), one may first get time series of the derivatives \({{\mathrm{d}}x_k}\mathord{\left/{\vphantom {{{\mathrm{d}}x_k}{{\mathrm{d}}t}}} \right. \kern-\nulldelimiterspace} {{\mathrm{d}}t}\) (\(k=1,{\ldots},\ D\), where D is a model dimension) via numerical differentiation and then approximate a dependence of \({{\mathrm{d}}x_k}\mathord{\left/{\vphantom {{{\mathrm{d}}x_k}{{\mathrm{d}}t}}} \right. \kern-\nulldelimiterspace} {{\mathrm{d}}t}\) on x in a usual way. Model equations can be multidimensional, which is another difference from the construction of models as explicit functions of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thus, growth of cancer cells is determined by the fact that they produce substances “inadequately” to the surrounding situation. A method of struggle against the disease, which is currently only hypothetical, could rely on the empirical modelling similar to that described in Swameye et al. (2003).

References

  • Baake, E., Baake, M., Bock, H.J., Briggs, K.M.: Fitting ordinary differential equations to chaotic data. Phys. Rev. A. 45, 5524–5529 (1992)

    Article  ADS  Google Scholar 

  • Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Orlando (1988)

    Google Scholar 

  • Bezruchko, B.P., Smirnov, D.A., Sysoev, I.V.: Identification of chaotic systems with hidden variables (modified Bock’s algorithm). Chaos, Solitons Fractals 29, 82–90 (2006)

    Article  ADS  MATH  Google Scholar 

  • Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jaeger, W., et al. (eds.) Modelling of Chemical Reaction Systems, pp. 102–125 Springer, New York (1981)

    Chapter  Google Scholar 

  • Box, G.E.P., Jenkins, G.M.: Time Series Analysis. Forecasting and Control. Holden-Day, San Francisco (1970)

    Google Scholar 

  • Breeden, J.L., Hubler, A.: Reconstructing equations of motion from experimental data with unobserved variables. Phys. Rev. A. 42, 5817–5826 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Bremer, C.L., Kaplan, D.T.: Markov chain Monte Carlo estimation of nonlinear dynamics from time series. Phys. D. 160, 116–126 (2001)

    Article  MATH  Google Scholar 

  • Butkovsky, O.Ya., Kravtsov Yu.A., Logunov, M.Yu. Analysis of a nonlinear map parameter estimation error from noisy chaotic time series. Radiophys. Quantum Electron 45(1), 55–66, (in Russian) (2002)

    Article  Google Scholar 

  • Chen, M., Kurths, J.: Chaos synchronization and parameter estimation from a scalar output signal. Phys. Rev. E. 76, 027203 (2007)

    Article  ADS  Google Scholar 

  • Davies, M.E.: Noise reduction schemes for chaotic time series. Physica D. 79, 174–192 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  • Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Engle Wood Cliffs, NJ (1983)

    Google Scholar 

  • Freitas, U.S., Macau, E.E.N., Grebogi, C.: Using geometric control and chaotic synchronization to estimate an unknown model parameter. Phys. Rev. E. 71, 047203 (2005)

    Article  ADS  Google Scholar 

  • Gouesbet, G., Meunier-Guttin-Cluzel, S., Ménard, O.: Global reconstructions of equations of motion from data series, and validation techniques, a review. In: Gouesbet, G., Meunier-Guttin-Cluzel, S., Ménard, O. (eds.) Chaos and Its Reconstructions, pp. 1–160. Nova Science Publishers, New York, (2003b)

    Google Scholar 

  • Horbelt, W., Timmer, J., Bünner, M.J., et al. Identifying physical properties of a \(\mathit{CO}_{2}\) laser by dynamical modeling of measured time series. Phys. Rev. E. 64, 016222 (2001)

    Article  ADS  Google Scholar 

  • Horbelt, W., Timmer, J.: Asymptotic scaling laws for precision of parameter estimates in dynamical systems. Phys. Lett. A. 310, 269–280 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Horbelt, W.: Maximum Likelihood Estimation in Dynamical Systems: PhD Thesis. University of Freiburg, Freiburg. Available at http://webber.physik.uni-freiburg.de/∼horbelt/diss. (2001)

    Google Scholar 

  • Horbelt, W.: Maximum Likelihood Estimation in Dynamical Systems: PhD thesis. University of Freiburg, Freiburg. Available at http://webber.physik.uni-freiburg.de/∼horbelt/diss (2001)

    Google Scholar 

  • Hu, M., Xu, Z., Zhang, R., Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems. Phys. Lett. A. 361, 231–237 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Huang, D.: Synchronization-based estimation of all parameters of chaotic systems from time series. Phys. Rev. E. 69, 067201 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Ibragimov, I.A., Has’minskii R.Z.: Asymptotic Theory of Estimation. Nauka, Moscow (1979). Translated into English Under the Title Statistical Estimation: Springer, New York (1981)

    Google Scholar 

  • Jaeger, L., Kanrz, H.: Unbiased reconstruction of the dynamics underlying a noisy chaotic time series. Chaos. 6, 440–450 (1996)

    Article  ADS  Google Scholar 

  • Judd, K.: Chaotic time series reconstruction by the Bayesian paradigm: Right results by wrong methods?. Phys. Rev. E. 67, 026212 (2003)

    Article  ADS  Google Scholar 

  • Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. ASME. 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  • Konnur, R.: Synchronization-based approach for estimating all model parameters of chaotic systems. Phys. Rev. E. 67, 027204 (2003)

    Article  ADS  Google Scholar 

  • Marino, I.P., Miguez, J.: Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems. Phys. Rev. E. 72. 057202 (2005)

    Article  ADS  Google Scholar 

  • Maybhate, A., Amritkar, R.E.: Use of synchronization and adaptive control in parameter estimation from a time series. Phys. Rev. E. 59, 284–293 (1999)

    Article  ADS  Google Scholar 

  • McSharry, P.E., Smith, L.A.: Better nonlinear models from noisy data: attractors with maximum likelihood. Phys. Rev. Lett. 83, 4285–4288 (1999)

    Article  ADS  Google Scholar 

  • Meyer, R., Christensen, N.: Bayesian reconstruction of chaotic dynamical systems. Phys. Rev. E. 62, 3535–3542 (2000)

    Article  ADS  Google Scholar 

  • Parlitz, U., Junge, L., Kocarev, L.: Synchronization-based parameter estimation from time series. Phys. Rev. E. 54, 6253–6259 (1996)

    Article  ADS  Google Scholar 

  • Parlitz, U.: Estimating model parameters from time series by auto-synchronization. Phys. Rev. Lett. 76, 1232–1235 (1996)

    Article  ADS  Google Scholar 

  • Pisarenko, V.F., Sornette, D.: Statistical methods of parameter estimation for deterministically chaotic time series. Phys. Rev. E. 69, 036122 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Sitz, A., Schwartz, U., Kurths, J., Voss, H.U.: Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys. Rev. E. 66, 016210 (2002)

    Article  ADS  Google Scholar 

  • Sitz, A., Schwarz, U., Kurths, J.: The unscented Kalman filter, a powerful tool for data analysis. Int. J. Bifurc. Chaos. 14, 2093–2105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Smirnov, D.A., Vlaskin, V.S., Ponomarenko, V.I.: Estimation of parameters in one-dimensional maps from noisy chaotic time series. Phys. Lett. A. 336, 448–458 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swameye, I., Muller, T.G., Timmer, J., et al.: Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by data based modeling. Proc. Natl. Acad. Sci. USA. 100, 1028–1033 (2003)

    Article  ADS  Google Scholar 

  • Tao, C., Zhang Yu., Du, G., Jiang, J.J.: Estimating model parameters by chaos synchronization. Phys. Rev. E. 69, 036204 (2004)

    Article  ADS  Google Scholar 

  • Voss, H.U., Timmer, J., Kurths, J.: Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bif. Chaos. 14, 1905–1933 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Yule, G.U.: On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. R. Soc. London A. 226, 267–298 (1927)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris P. Bezruchko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bezruchko, B.P., Smirnov, D.A. (2010). Model Equations: Parameter Estimation. In: Extracting Knowledge From Time Series. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12601-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12601-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12600-0

  • Online ISBN: 978-3-642-12601-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics