Skip to main content

Stochastic Models of Evolution

  • Chapter
  • First Online:
Extracting Knowledge From Time Series

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 2071 Accesses

Abstract

To continue the discussion of randomness given in Sect. 2.2.1, we briefly touch on stochastic models of temporal evolution (random processes). They can be specified either via explicit definition of their statistical properties (probability density functions, correlation functions, etc., Sects. 4.1, 4.2 and 4.3) or via stochastic difference or differential equations. Some of the most widely known equations, their properties and applications are discussed in Sects. 4.4 and 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is also another terminology where equation (4.3) is called an auto-correlation function, and after the normalisation, a normalised auto-correlation function. To avoid misunderstanding, we do not use it in this book.

  2. 2.

    There is also somewhat different interpretation related to an additional requirement of a finite variance for a weakly stationary process. In such a case, the weak stationarity does not follow from the strong one.

References

  • Anishchenko, V.S., Neiman, A.B., Moss, F., Schimansky-Geier, L.: Stochastic resonance: Noise enhanced order. Physics – Uspekhi. 42, 7–38 (1999)

    Article  ADS  Google Scholar 

  • Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climate change. Tellus. 34, 10–16 (1982)

    Article  ADS  Google Scholar 

  • Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A. 14, L453–L457 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  • Box, G.E.P., Jenkins, G.M.: Time series analysis. Forecasting and Control. Holden-Day, San Francisco (1970)

    Google Scholar 

  • Bulsara, A., Hänggi, P., Marchesoni, F., Moss, F., Shlesinger, M. (eds.): Stochastic resonance in physics and biology. J. Stat. Phys. 70, 1–512 (1993)

    Article  ADS  Google Scholar 

  • Collins, J.J., Chow, C.C., Capela, A.C., Imhoff, T.T.: Aperiodic stochastic resonance. Phys. Rev. E. 54, 5575–5584 (1996)

    Article  ADS  Google Scholar 

  • Cordo, P., Inglis, J.T., Verschueren, S., Collins, J.J., Merfeld, D.M., et al.: Noise in human muscle spindles. Nature 383, 769–770 (1996)

    Article  ADS  Google Scholar 

  • Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–339 (1993)

    Article  ADS  Google Scholar 

  • Ermentrout, G.B., Galan, R.F., Urban, N.N.: Reliability, synchrony and noise. Trends Neurosci. 31, 428–434 (2008)

    Article  Google Scholar 

  • Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic Resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  ADS  Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes. Springer, Berlin (1974)

    Book  Google Scholar 

  • Golitsyn, G.S.: White noise as a base for explanation of many laws in nature. In: Gaponov-Grekhov, A.V., Nekorkin, V.I. (eds.) Nonlinear Waves – 2002. Institute of Applied Physics RAS, pp. 117–132. Nizhny Novgorod, (in Russian) (2003)

    Google Scholar 

  • Greenwood, P.E., Ward, L.M., Russell, D.F., Neiman, A., Moss, F.: Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773–4776 (2000)

    Article  ADS  Google Scholar 

  • Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics,. vol. 2 and 3. Charles Griffin, London (1979)

    Google Scholar 

  • Lee, S.-G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E. 57, 3292–3297 (1998)

    Article  ADS  Google Scholar 

  • Levin, J.E., Miller, J.P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 (1996)

    Article  ADS  Google Scholar 

  • Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327 (1993)

    Article  ADS  MATH  Google Scholar 

  • Malakhov, A.N.: Fluctuations in self-oscillatory systems. Nauka, Moscow, (in Russian) (1968)

    Google Scholar 

  • Mannella, R. Numerical integration of stochastic differential equations. In: Vazquez, L., Tirando, F., Martin, I. (eds.) Supercomputation in Nonlinear and Disordered Systems: Algorithms, Applications and Architectures, pp. 100–129. World Scientific, Singapore (1997)

    Google Scholar 

  • McDonnell, M.D., Abbott, D.: What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009)

    Article  MathSciNet  Google Scholar 

  • Moss, F., Ward, L., Sannita, W.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 (2004)

    Article  Google Scholar 

  • Neiman, A., Silchenko, A., Anishchenko, V., Schimansky-Geier, L.: Stochastic resonance: Noise-enhanced phase coherence. Phys. Rev. E. 58, 7118–7125 (1998)

    Article  ADS  Google Scholar 

  • Nicolis, C.: Solar variability and stochastic effects on climate. Sol. Phys. 74, 473–478 (1981)

    Article  ADS  Google Scholar 

  • Nicolis, C.: Stochastic aspects of climatic transitions-response to a periodic forcing. Tellus. 34, 1–9 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Nicolis, C.: Long-term climatic transitions and stochastic resonance. J. Stat. Phys. 70, 3–14 (1993)

    Article  ADS  MATH  Google Scholar 

  • Nikitin, N.N., Razevig, V.D.: Methods of digital modelling of stochastic differential equations and estimation of their errors. Comput. Math. Math. Physics. 18(1), 106–117, (in Russian) (1978)

    MathSciNet  MATH  Google Scholar 

  • Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (1995)

    Google Scholar 

  • Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Risken, H.: The Fokker – Planck Equation. Springer, Berlin (1989)

    Book  Google Scholar 

  • Russell, D.F., Wilkens, L.A., Moss, F.: Use of behavioural stochastic resonance by paddlefish for feeding. Nature 402, 291–294 (1999)

    Article  ADS  Google Scholar 

  • Rytov, S.M., Kravtsov Yu.A., Tatarskiy, V.I.: Introduction to statistical radiophysics (part II). Nauka, Moscow (1978). Translated into English: Springer, Berlin (1987)

    Google Scholar 

  • Siegert, S., Friedrich, R., Peinke, J.: Analysis of data sets of stochastic systems. Phys. Lett. A. 243, 275–280 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Silchenko, A., Hu, C.-K.: Multifractal characterization of stochastic resonance. Phys. Rev. E. 63, 041105 (2001)

    Article  ADS  Google Scholar 

  • Silchenko, A., Kapitaniak, T., Anishchenko, V.: Noise-enhanced phase locking in a stochastic bistable system driven by a chaotic signal. Phys. Rev. E. 59, 1593–1599 (1999)

    Article  ADS  Google Scholar 

  • Stratonovich, R.L.: Topics in the theory of random noise. Gordon and Breach, New York (1967)

    Google Scholar 

  • Sun, X., Lu Q, Kurths, J.: Correlated noise induced spatiotemporal coherence resonance in a square lattice network. Phys. A. 387, 6679–6685 (2008a)

    Article  Google Scholar 

  • Sun, X., Perc, M., Lu, Q., Kurths, J.: Spatial coherence resonance on diffusive and small-world networks of Hodgkin–Huxley neurons. Chaos. 18, 023102 (2008b)

    Article  MathSciNet  ADS  Google Scholar 

  • Timmer, J.: Parameter estimation in nonlinear stochastic differential equations. Chaos, Solitons Fractals. 11, 2571–2578 (2000)

    Article  ADS  MATH  Google Scholar 

  • Volkov, E.I., Ullner, E., Kurths, J.: Stochastic multiresonance in the coupled relaxation oscillators. Chaos. 15, 023105 (2005)

    Article  ADS  Google Scholar 

  • Volkov, E.I., Stolyarov, M.N., Zaikin, A.A., Kurths, J.: Coherence resonance and polymodality in inhibitory coupled excitable oscillators. Phys. Rev. E. 67, 066202 (2003a)

    Article  ADS  Google Scholar 

  • Volkov, E.I., Ullner, E., Zaikin, A.A., Kurths, J.: Oscillatory amplification of stochastic resonance in excitable systems. Phys. Rev. E. 68, 026214 (2003b)

    Article  ADS  Google Scholar 

  • Volkov, E.I., Ullner, E., Zaikin, A.A., Kurths, J.: Frequency-dependent stochastic resonance in inhibitory coupled excitable systems. Phys. Rev. E. 68, 061112 (2003c)

    Article  ADS  Google Scholar 

  • Volkov, I.K., Zuev, S.M., Ztvetkova, G.M.: Random Processes. N.E. Bauman MGTU, Íoscow, (in Russian) (2000)

    Google Scholar 

  • Wentzel’ A.D.: Course of the Theory of Random Processes. Nauka, Moscow (1975). Translated into English: A course in the theory of stochastic processes. McGraw-Hill Intern., New York (1981)

    Google Scholar 

  • Wiesenfeldt, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  ADS  Google Scholar 

  • Zaikin, A., Garcia-Ojalvo, J., Bascones, R., Ullner, E., Kurths, J. Doubly stochastic coherence via noise-induced symmetry in bistable neural models. Phys. Rev. Lett. 90, 030601 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris P. Bezruchko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bezruchko, B.P., Smirnov, D.A. (2010). Stochastic Models of Evolution. In: Extracting Knowledge From Time Series. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12601-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12601-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12600-0

  • Online ISBN: 978-3-642-12601-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics