Skip to main content

Dynamical (Deterministic) Models of Evolution

  • Chapter
  • First Online:
Extracting Knowledge From Time Series

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 2089 Accesses

Abstract

Dynamical modelling requires specification of a D-dimensional state vector \(\textbf{x}=(x_{1},x_{2},\ldots,x_{\mathit{D}})\), where x i are dynamical variables, and some rule Φ t allowing unique determination of future states \(\textbf{x}(t)\) based on an initial state \(\textbf{x}(0)\):

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If A and B are number sets, one gets algebraic or transcendental equations. If they are function sets, one gets differential, integral and other equations depending on the kind of the maps.

  2. 2.

    A recurrent formula is the relationship of the form \(x_{n+p}=f(x_n, x_{n+1},\ldots,x_{n+p-1})\) allowing calculation of any element in a sequence if its p starting elements are specified.

  3. 3.

    It is intermediate between a microscopic level, when one studies elements of a system separately (e.g. molecules of a fluid), and a macroscopic one, when an entire system is considered as a whole (e.g. in terms of some averaged characteristics).

  4. 4.

    “Superposition (composition) of functions is arranging a composite function (function of function) from two functions” (Mathematical dictionary, 1988). Here, the terms “superposition” and “composition” are synonyms. However, physicists often call superposition of functions f 1 and f 2 their linear combination \(\mathit{af}_1+\mathit{bf}_2\), where a and b are constants. Then, the meanings of the terms “superposition” and “composition” become different. To avoid misunderstanding, we use only the term “composition” in application to composite functions.

  5. 5.

    Exponential rise of a population observed at \(\alpha>0\) is called the Malthusian rise, since a catholic monk Malthus in the sixteenth century was the first who got this result. It is valid until population gets too large so that there is no longer enough food for everybody.

  6. 6.

    This is a diode with a pn junction whose capacity depends on voltage, i.e. an electrically controlled capacitor. Circuits with such diodes are used in radioengineering for more than half a century. They were even suggested as memory elements for computers. Different kinds of such circuits are widely presented in contemporary radio sets and TV sets.

  7. 7.

    When a charge is accumulated on the capacitor plates and a current flows in the wires, electric and magnetic forces appear and tend to compress or stretch the wires. Therefore, if substances of the coil and capacitor are not hard enough, their size (and, hence, C and L) can depend on the current and voltage (dynamical variables) implying emergence of nonlinearity.

  8. 8.

    The branch A corresponds to the evolution of in-phase regimes \((m=0),\ B-D\) to the others.

  9. 9.

    Complex dynamics of this non-linear system is illustrated by a computer program available at http://www.nonlinmod.sgu.ru and in research papers Astakhov et al. (1989, 1991a).

  10. 10.

    Map (3.34) is taken for simplicity. Thus, multistability in a set of quadratic maps is formed on the basis of a period-doubled cycle, while in a set of maps (3.34) it is observed already for the period-1 cycles. When an isolated map (3.34) has two period-1 states, there are four period-1 oscillation kinds in a set of two maps (Bezruchko and Prokhorov, 1999).

  11. 11.

    A distribution of the values of a characterising quantity over an automaton workspace.

  12. 12.

    It is a ring consisting of a non-linear amplifier (characterised by a function f), an inertial element (a filter with a response time determined by ε) and a delay line (with a delay time τ).

  13. 13.

    As well, there are purely electric mechanisms of neuron coupling.

  14. 14.

    In von Neumann’s model of computations (realised in a usual computer), memory access is possible only via an address, which does not depend on the memory contents. Associative memory is accessible based on the current contents. Memory contents can be called even by partial or distorted contents.

References

  • Afraimovich, V.S., Nekorkin, V.I., Osipov, G.V., Shalfeev, V.D.: Stability, structures, and chaos in nonlinear synchronisation networks. Gor’ky Inst. Appl. Phys. RAS (in Russian) (1989)

    Google Scholar 

  • Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Andreev, K.V., Krasichkov, L.V.: Electrical activity of a neuron modeled by piecewise continuous maps. Tech. Phys. Lett. 29(2), 105–108 (2003)

    Article  ADS  Google Scholar 

  • Andreev, Yu.V., Dmitriev, A.S.: Recording and restoration of images in one-dimensional dynamical systems. J. Commun. Technol. Electron. 39(1), 104–113, (in Russian) (1994)

    Google Scholar 

  • Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Physics Reports. 469, 93–153 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Arnold, V.I.: On the representation of continuous functions of three variables by the superpositions of continuous functions of two variables. Matem. Sbornik. 48(1), 3–74, (in Russian) (1959)

    Google Scholar 

  • Astakhov, V.V., Bezruchko, B.P., Gulyaev, Yu.V., Seleznev, Ye.P.: Multistable states of dissipatively coupled Feigenbaum systems. Tech. Phys. Letters. 15(3), 60–65, (in Russian) (1989)

    MathSciNet  Google Scholar 

  • Astakhov, V.V., Bezruchko, B.P., Ponomarenko, V.I.: Formation of multistability, classification of isomers, and their evolution in coupled Feigenbaum systems. Radiophys. Quantum Electron. 34(1), 35–39, (in Russian) (1991a)

    Article  ADS  Google Scholar 

  • Astakhov, V.V., Bezruchko, B.P., Ponomarenko, V.I., Seleznev, Ye.P.: Multistability in system of radiotechnical oscillators with capacity coupling. J. Commun. Technol. Electron. 36(11), 2167–2170, (in Russian) (1991b)

    Google Scholar 

  • Barabasi, A.L., Albert, R.: Emergence of scaling in Random Networks. Science. 286, 509–512 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  • Bezruchko, B.P., Prokhorov, M.D., Seleznev, Ye.P.: Multiparameter model of a dissipative nonlinear oscillator in the form of one dimensional map. Chaos, Solitons, Fractals. 5(11), 2095–2107 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bezruchko, B.P., Prokhorov, M.D.: Control of spatio-temporal chaos in a chain of bi-stable oscillators. Tech. Phys. Lett. 25(12), 51–57, (in Russian) (1999)

    Google Scholar 

  • Bezruchko, B.P., Jalnine, A.Yu., Prokhorov, M.D., Seleznev, Ye.P.: Discrete nonlinear models of a periodically driven RL-diode circuit. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 5(2), 48–62, (in Russian) (1997a)

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • Butkovsky, O.Ya., Kravtsov Yu.A., Surovyatkina, E.D.: Structure of the attraction zones of the final states in the presence of dynamical period doubling bifurcations. J. Exp. Theor. Phys. 86(1), 206–212 (1998)

    Article  ADS  Google Scholar 

  • Carcasses, J., Mira, C., Bosh, M., et al. Crossroad area – spring area transition. Parameter plane representation. Int. J. Bif. Chaos. 1, 183 (1991)

    Article  MATH  Google Scholar 

  • Danilov Yu.A. Nonlinearity. Znaniye – sila. 11, 34–36, (in Russian) (1982)

    MathSciNet  Google Scholar 

  • Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Upper Saddle River, (1983)

    Google Scholar 

  • Dmitriev, A.S.: Recording and retrieval of information in one-dimensional dynamical systems. J. Commun. Technol. Electron. 36(1), 101–108, (in Russian) (1991)

    MathSciNet  Google Scholar 

  • Dmitriev, A.S., Kislov, V.Ya. Stochastic oscillations in radiophysics and electronics. Nauka, Moscow, (in Russian) (1989)

    Google Scholar 

  • Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  • Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Sci. 1(1), 4–27 (1980)

    MathSciNet  Google Scholar 

  • Gorban’ A.N., Dunin-Barkovsky, V.L., Kirdin, A.N., et al. Neuroinformatics. Nauka, Novosibirsk, (in Russian) (1998)

    Google Scholar 

  • Gorban’ A.N.: Multivariable functions and neural networks. Soros Educ. J. 12, 105–112, (in Russian) (1998)

    Google Scholar 

  • Gouesbet, G., Letellier, C.: Global vector-field approximation by using a multivariate polynomial \(L_2 \) approximation on nets. Phys. Rev. E. 49, 4955–4972 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Gouesbet, G., Meunier-Guttin-Cluzel, S., Ménard, O.: Global reconstructions of equations of motion from data series, and validation techniques, a review. In: Gouesbet, G., Meunier-Guttin-Cluzel, S., Ménard, O. (eds.) Chaos and Its Reconstructions, pp. 1–160. Nova Science Publishers, New York, (2003)

    Google Scholar 

  • Horbelt, W.: Maximum likelihood estimation in dynamical systems: PhD thesis. University of Freiburg, Freiburg, Available at http://webber.physik.uni-freiburg.de/ \(\sim \)horbelt/diss (2001)

  • Ivanchenko, M.V., Osipov, G.V., Schalfeev, V.D., Kurths, J.: Phase synchronization in ensembles of bursting oscillators. Phys. Rev. Lett. 93, 134101 (2004)

    Article  ADS  Google Scholar 

  • Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bif. Chaos. 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalitkin, N.N.: Numerical Methods. Nauka, Moscow, (in Russian) (1978)

    Google Scholar 

  • Kazantsev, V.B.: Dynamical transformation of pulse signals in neuron systems. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 12(6), 118–128, (in Russian) (2004)

    MathSciNet  MATH  Google Scholar 

  • Kazantsev, V.B., Nekorkin, V.I.: Dynamics and oscillatory neurons. In: Gaponov-Grekhov, A.V., Nekorkin, V.I. (eds.) Informational Aspects. Nonlinear Waves – 2002, pp. 9–33 Institute of Applied Physics RAS, Nizhny Novgorod, (in Russian) (2003)

    Google Scholar 

  • Kazantsev, V.B., Nekorkin, V.I.: Phase-controlled oscillations in neurodynamics. In: Gaponov-Grekhov, A.V., Nekorkin, V.I. Nonlinear Waves – 2004, pp. 345–361. Institute of Applied Physics RAS, Nizhny Novgorod, (in Russian) (2005)

    Google Scholar 

  • Kazantsev, V.B., Nekorkin, V.I., Binczak, S., et al. Spiking dynamics of interacting oscillatory neurons. Chaos. 15, 023103 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Kazantsev, V.B., Nekorkin, V.I.: Dynamics and oscillatory neurons. In: Gaponov-Grekhov, A.V., Nekorkin, V.I. (eds.) Informational Aspects. Nonlinear Waves – 2002, pp. 9–33 Institute of Applied Physics RAS, Nizhny Novgorod, (in Russian) (2003)

    Google Scholar 

  • Kipchatov, A.A.: Peculiarities of nonlinear dynamics of a nonautonomous nonlinear circuit. Radiophys. Quantum Electr. 33(2), 182–190, (in Russian) (1990)

    MathSciNet  Google Scholar 

  • Kislov, V.Ya., Zalogin, N.N., Myasin, E.A.: Investigation of stochastic self-sustained oscillatory processes in self-sustained generators with time delay. J. Commun. Technol. Electr. 24(6), 1118–1130, (in Russian) (1979)

    Google Scholar 

  • Kolmogorov, A.N.: About representation of continuous multivariable functions as superposition of continuous one-variable functions. Doklady Acad. Sci. USSR. 114(5), 953–956, (in Russian) (1957)

    MathSciNet  MATH  Google Scholar 

  • Kurths, J., Maraun, D., Zhou, C.S., Zamora-Lopez, G., Zou, Y.: Dynamics in Complex Systems. Eur. Rev. 17(2), 357–370 (2009)

    Article  Google Scholar 

  • Kuznetsov, A.P., Kuznetsov, S.P.: Critical dynamics of coupled map lattices at boundary of chaos (a review). Radiophys. Quantum Electr. 34(10–12), 1079–1115, (in Russian) (1991)

    Google Scholar 

  • Kuznetsov, A.P., Kuznetsov, S.P.: Critical dynamics of one-dimensional maps. Part 1. Feigenbaum scenario. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 1(1–2), 15–33, (in Russian) (1993a)

    Google Scholar 

  • Kuznetsov, A.P., Kuznetsov, S.P.: Critical dynamics of one-dimensional maps. Part 2. Two-parametric transition to chaos. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 1(3–4), 17–35, (in Russian) (1993b)

    Google Scholar 

  • Kuznetsov, A.P., Potapova, A.Yu. Peculiarities of complex dynamics of nonlinear non-autonomous oscillators with Thom’s catastrophe. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 8(6), 94–120, (in Russian) (2000)

    Google Scholar 

  • Kuznetsov, S.P.: Complex dynamics of oscillators with delayed feedback (review). Radiophys. Quantum Electr. 25(12), 1410–1428, (in Russian) (1982)

    Google Scholar 

  • Kuznetsov, S.P.: Dynamical chaos. Fizmatlit, Moscow, (in Russian) (2001)

    Google Scholar 

  • Kuznetsov, S.P.: Universality and scaling in the behavior of coupled Feigenbaum systems. Radiophys. Quantum Electr. 28, 681–695 (1986)

    Article  ADS  Google Scholar 

  • Kuznetsova, A.Yu., Kuznetsov, A.P., Knudsen, C., Mosekilde, E.: Catastrophe theoretic classification of nonlinear oscillators. Int. J. Bif. Chaos. 14, 1241–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Linsay, P.S.: Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys. Rev. Lett. 47, 1349–1352 (1981)

    Article  ADS  Google Scholar 

  • Loskutov, A.Yu., Mikhailov, A.S.: Basics of Complex Systems Theory. Regular and Chaotic Dynamics, Moscow (2007)

    Google Scholar 

  • Malinetsky, G.G., Potapov, A.B.: Contemporary Problems of Nonlinear Dynamics. Editorial URSS, Moscow, (in Russian) (2000)

    Google Scholar 

  • Malinetsky, G.G., Stepantsev, M.E.: Modelling of crowd movement with cellular automata. Izvestiya VUZ. Appl. Nonlinear Dynamics (ISSN 0869-6632). 5(5), 75–79, (in Russian) (1997)

    Google Scholar 

  • Margolus, N., Toffoli, T.: Cellular automata machines. Addison-Wesley, New York (1990)

    Google Scholar 

  • Mathematical Encyclopedic Dictionary. Sov. Encyclopedia, Moscow, 846p., (in Russian) (1988)

    Google Scholar 

  • McCulloc, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  • Mikhailov, A.S., Loskutov, A.Yu. Foundations of Synergetics. An Introduction. W.H. Freeman, New York (1989)

    Google Scholar 

  • Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, New York (1967)

    Google Scholar 

  • Mira, C., Carcasses, J.: On the crossroad area – saddle area and spring area transition. Int. J. Bif. Chaos. 1, 643 (1991)

    Google Scholar 

  • Motter, A.E., Zhou, C.S., Kurths, J.: Enhancing complex-network synchronization. Europhys. Lett. 69, 334–340 (2005)

    Article  ADS  Google Scholar 

  • Neimark, Yu.I., Landa, P.S.: Stochastic and Chaotic Oscillations, 424p. Nauka, Moscow (1987). Translated into English: Kluwer Academic, Dordrecht and Boston (1992)

    Google Scholar 

  • Neimark Yu.I.: Method of Point Mapping in the Theory of Nonlinear Oscillations. Nauka, Moscow, (in Russian) (1972)

    Google Scholar 

  • Neimark Yu.I.: Mathematical models in natural science and technology. Nizhny Novgorod Inst. Appl. Phys. RAS. Part 1, (1994); Part 2, (1996); Part 3, (1997). (in Russian)

    Google Scholar 

  • Nekorkin, V.I., Dmitrichev, A.S., Shchapin, D.S., Kazantsev, V.B.: Dynamics of neuron model with complex threshold excitation. Math. Model. 17(6), 75–91, (in Russian) (2005)

    MathSciNet  MATH  Google Scholar 

  • Nekorkin, V.I., Velarde, M.G.: Synergetic Phenomena in Active Lattices. Springer, Berlin (2002)

    Book  Google Scholar 

  • Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)

    Book  Google Scholar 

  • Parlitz, U.: Common dynamical features of periodically driven strictly dissipative oscillators. Int. J. Bif. Chaos. 3, 703–715 (1991)

    MathSciNet  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  • Prokhorov, M.D., Smirnov, D.A.: Empirical discrete model of the diode oscillating loop. J. Commun. Technol. Electr. 41(14), 1245–1248 (1996)

    Google Scholar 

  • Rapp, P.E., Schmah, T.I., Mees, A.I.: Models of knowing and the investigation of dynamical systems. Phys. D. 132, 133–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Rulkov, N.F.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86, 183–186. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E. 65, 041922 (2001)

    Article  ADS  Google Scholar 

  • Samarsky, A.A.: Introduction to Numerical Methods. Nauka, Moscow, (in Russian) (1982)

    Google Scholar 

  • Scheffczyk, C., Parlitz, U., Kurz, T., et al. Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. A. 43, 6495–6502 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Schreiber, T.: Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys. Rev. Lett. 78, 843–846 (1997)

    Article  ADS  Google Scholar 

  • Schuster, H.G.: Deterministic chaos. Physik Verlag, Weinheim (1984)

    Google Scholar 

  • Shalfeev, V.D., Matrosov V.V.: Chaotically modulated oscillations in coupled phase systems. In: Gaponov-Grekhov, A.V., Nekorkin , V.I. (eds) Nonlinear Waves – 2004, pp. 77–89. Institute of Applied Physics RAS, Nizhny Novgorod, (In Russian) 2005

    Google Scholar 

  • Shalizi, C.R.: Methods and Techniques of Complex Systems Science: An Overview, vol. 3, arXiv:nlin.AO/0307015. Available at http://www.arxiv.org/abs/nlin.AO/0307015 (2003)

  • Stone, M.N.: The generalized Weierstrass approximation theorem. Math. Mag. 21, 167–183, 237–254 (1948)

    Article  MathSciNet  Google Scholar 

  • Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  ADS  Google Scholar 

  • Sveshnikov, A.G., Bogolyubov, A.N., Kravtsov, V.V.: Lectures in mathematical physics. Moscow State University, Moscow (in Russian) (1993)

    Google Scholar 

  • Thompson, J.M., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    Google Scholar 

  • Tikhonov, A.N., Samarsky, A.A.: Equations of Mathematical Physics Nauka, Moscow (1972). Translated into English: Dover Publications (1990)

    Google Scholar 

  • Trubetskov, D.I.: Oscillations and Waves for Humanitarians. College, Saratov, (in Russian) (1997)

    Google Scholar 

  • Vladimirov, V.S.: Equations of Mathematical Physics. Nauka, Moscow (1976). Translated into English: Mir Publ., Moscow (1984)

    Google Scholar 

  • von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Chicago, IL (1966)

    Google Scholar 

  • Wang, Q.: The global solution of the n-body problem. Celestial Mech. 50, 73–88 (1991)

    Article  ADS  MATH  Google Scholar 

  • Wasserman, P.: Neural Computing. Van Nostrand Reinhold, New York (1989)

    Google Scholar 

  • Watts, D.J.: Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton, NJ (1999)

    Google Scholar 

  • Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris P. Bezruchko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bezruchko, B.P., Smirnov, D.A. (2010). Dynamical (Deterministic) Models of Evolution. In: Extracting Knowledge From Time Series. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12601-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12601-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12600-0

  • Online ISBN: 978-3-642-12601-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics