Skip to main content

Practical Applications of Empirical Modelling

  • Chapter
  • First Online:
Extracting Knowledge From Time Series

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

It is difficult even to list all fields of knowledge and practice where modelling from data series is applied. One can say that they range from astrophysics to medicine. Purposes of modelling are diverse as well. Therefore, we confine ourselves with several examples demonstrating practical usefulness of empirical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anishchenko, V.S., Pavlov, A.N.: Global reconstruction in application to multichannel communication. Phys. Rev. E. 57, 2455–2457 (1998)

    Article  ADS  Google Scholar 

  • Anosov, O.L., Butkovsky, O.Ya., Kravtsov, Yu.A.: Minimax Procedure for Identifying Chaotic Systems from the Observed Time Sequence. J. Commun. Technol. Electron. 42(3), 288–293, (1997)

    Google Scholar 

  • Casdagli, M., Eubank, S. (eds.): Nonlinear modeling and forecasting. SFI Studies in the Sciences of Complexity, vol XII. Addison-Wesley, New York, (1992)

    Google Scholar 

  • Casdagli, M.: Nonlinear prediction of chaotic time series. Phys. D. 35, 335–356 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Davies, M.E.: Noise reduction schemes for chaotic time series. Phys. D. 79, 174–192 (1994)

    MathSciNet  MATH  Google Scholar 

  • Dikanev, T., Smirnov, D., Wennberg, R., Perez Velazquez, J.L., Bezruchko, B. EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis. Clin. Neurophysiol. 116, 1796–1807 (2005)

    Article  Google Scholar 

  • Dmitriev, A.S., Panas, A.I.: Dynamical chaos: Novel type of information carrier for communication systems. Fizmatlit, Moscow, (in Russian) (2002)

    Google Scholar 

  • Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  • Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Phys. D. 56, 185–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Ershov, S.V., Potapov, A.B.: On the concept of stationary Lyapunov basis. Phys. D. 118, 167–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Farmer, J.D., Sidorowich, J.J.: Optimal shadowing and noise reduction. Phys. D. 47, 373–392 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Feigin, A.M., Konovalov, I.B., Molkov, Y.I.: Toward an understanding of the nonlinear nature of atmospheric photochemistry: essential dynamic model of the mesospheric photochemical system. J. Geophys. Res. 103(D19), 25447–25460 (1998)

    Article  ADS  Google Scholar 

  • Feigin, A.M., Mol’kov Ya.I., Mukhin, D.N., Loskutov, E.M.: Forecast pof qualitative behaviour of dynamical system from chaotic time series. Radiophys. Quantum Electron. 44(5–6), 376–399, (in Russian) (2001)

    Google Scholar 

  • Gerschenfeld, N.A., Weigend, A.S. (eds.): Time series prediction: forecasting the future and understanding the past. SFI Studies in the Science of Complexity, Proc. V. XV. Addison-Wesley, New York (1993)

    Google Scholar 

  • Gribkov, D., Gribkova, V.: Learning dynamics from nonstationary time series: analysis of electroencephalograms. Phys. Rev. E. 61, 6538–6545 (2000)

    Article  ADS  Google Scholar 

  • Gribkov, D.A., Gribkova, V.V., Kravtsov Yu.A., et al.: Construction of a model for systems of stabilisation of resonance frequency and temperature in a section of linear electron accelerator from experimental data. Moscow Univ. Bull. Ser. 3. 35(1), 96–98, (in Russian) (1994)

    Google Scholar 

  • Gribkov, D.A., Gribkova, V.V., Kuznetsov Yu.I.: Reconstruction of external driving from realisation of a single variable of self-stochastic system. Moscow Univ. Bull. Ser. 3. 36(1): 76–78, (in Russian) (1995)

    Google Scholar 

  • Hamming, R.W.: Digital Filters. 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1983)

    Google Scholar 

  • Hegger, R., Kantz, H., Schmuser, F., et al. Dynamical properties of a ferroelectric capacitors observed through nonlinear time series analysis. Chaos. 8, 727–754 (1998)

    Article  ADS  MATH  Google Scholar 

  • Hively, L.M., Gaily, P.C., Protopopescu, V.A.: Detecting dynamical change in nonlinear time series. Phys. Lett. A. 258, 103–114 (1999)

    Article  ADS  Google Scholar 

  • Kadtke, J., Kremliovsky, M.: Estimating statistics for detecting determinism using global dynamical models. Phys. Lett. A. 229, 97–106 (1997)

    Article  ADS  Google Scholar 

  • Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A. 185, 77 (1995)

    Article  ADS  Google Scholar 

  • Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, vol. 2 and 3. Charles Griffin, London (1979)

    Google Scholar 

  • Kostelich, E.J., Schreiber, T.: Noise reduction in chaotic time series data: a survey of common methods. Phys. Rev. E. 48, 1752–1763 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Kravtsov, Yu.A. (ed.): Limits of Predictability. TsentrCom, Moscow, (in Russian) (1997a)

    Google Scholar 

  • Mol’kov Ya.I., Feigin, A.M.: Forecast of qualitative behaviour of dynamical system from chaotic time series. In: Gaponov-Grekhov, A.V., Nekorkin, V.I. (eds.) Nonlinear Waves – 2002, pp. 34–53. Institute of Applied Physics RAS, Nizhny Novgorod, (in Russian) (2003)

    Google Scholar 

  • Pavlov, A.N., Janson, N.B., Anishchenko, V.S.: Application of statistical methods to solve the problem of global reconstruction. Tech. Phys. Lett. 23(4), 297–299 (1997)

    Article  ADS  Google Scholar 

  • Ponomarenko, V.I., Prokhorov, M.D.: Coding and recovery of information masked by the chaotic signal of a time-delay system. J. Commun. Technol. Electron. 49(9), 1031–1037 (2004)

    Google Scholar 

  • Ponomarenko, V.I., Prokhorov, M.D.: Extracting information masked by the chaotic signal of a time-delay system. Phys. Rev. E. 66, 026215 (2002)

    Article  ADS  Google Scholar 

  • Rabiner, L.R., Gold, B.: Theory and Applications of Digital Signal Processing. Prentice Hall, New York (1975)

    Google Scholar 

  • Schreiber, T.: Detecting and Analyzing Nonstationarity in a time series using nonlinear cross predictions. Phys. Rev. Lett. 78, 843–846 (1997)

    Article  ADS  Google Scholar 

  • Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308, 3082–3145 (1999)

    Article  MathSciNet  Google Scholar 

  • Small, M., Judd, K., Mees, A.I.: Testing time series for nonlinearity. Statistics Comput. 11, 257–268 (2001)

    Article  MathSciNet  Google Scholar 

  • Soofi, A.S., Cao, L. (eds.): Modeling and Forecasting Financial Data: Techniques of Nonlinear Dynamics. Kluwer, Dordrecht (2002)

    Google Scholar 

  • Sysoev, I.V., Smirnov, D.A., Seleznev Ye.P., Bezruchko, B.P.: Reconstruction of nonlinear characteristics and equivalent parameters from experimental time series. Proc. 2nd IEEE Int. Conf. Circuits and Systems for Communications. Paper No. 140. Moscow (2004)

    Google Scholar 

  • Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. 7, 1055 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Timmer, J., Rust, H., Horbelt, W., Voss, H.U.: Parametric, nonparametric and parametric modelling of a chaotic circuit time series. Phys. Lett. A. 274, 123–130 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Voss, H.U., Schwache, A., Kurths, J., Mitschke, F.: Equations of motion from chaotic data: A driven optical fiber ring resonator. Phys. Lett. A. 256, 47–54 (1999)

    Article  ADS  Google Scholar 

  • Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris P. Bezruchko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bezruchko, B.P., Smirnov, D.A. (2010). Practical Applications of Empirical Modelling. In: Extracting Knowledge From Time Series. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12601-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12601-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12600-0

  • Online ISBN: 978-3-642-12601-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics