Skip to main content

Heat and Mass Transfer on Laminar Forced Film Condensation of Pure Vapour

  • Chapter
  • First Online:
Theory of Heat Transfer with Forced Convection Film Flows

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1739 Accesses

Abstract

On the basis of Chaps. 9 and 10, heat and mass transfer investigation is done under the new similarity analysis system for laminar forced film condensation of pure vapour. The heat transfer analysis equations are provided where the wall dimensionless temperature gradient becomes only one no-given variable for prediction of condensate heat transfer. By means of the condensate mass transfer analysis, the condensate mass flow rate parameter is induced as the function of the dimensionless condensate liquid film thickness and the interfacial dimensionless condensate liquid velocity components. It is found that the condensate mass flow rate parameter is the only one no-given variable for prediction of condensate mass transfer. Take the laminar forced film condensation of water vapour on a horizontal flat plate as an example, the systems of key numerical solutions on the wall dimensionless temperature gradient and mass flow rate parameter is obtained, and further rigorously formulated by using curve-fitting approach. With the rigorously formulated equations on the wall dimensionless temperature gradient and mass flow rate parameter, the theoretical analysis equations on condensate heat and mass become available for simple and reliable prediction of heat and mass transfer on laminar forced film condensation of saturated and superheated water vapour. Thus, the effects of the wall subcooled grade and vapour superheated grads on the condensate heat and mass transfer are clarified. Although increasing the wall subcooled grade causes decreasing the wall temperature gradient, it will increase the condensate heat transfer. Increasing the wall subcooled grade causes increasing the condensate mass flow rate parameter, and further causes increasing the condensate mass flow rate. Increasing the vapour superheated grade causes decreasing the condensate mass flow rate parameter, and further causes decreasing the condensate mass flow rate. Compared with the effect of the wall subcooled grade on heat and mass transfer of the forced film condensation, the effect of the vapour subcooled grade is so slight that it can be ignored in the special range of the superheated grade. At last, a condensate mass–energy transformation equation is reported in this chapter under the new similarity analysis system for a better clarification of the internal relation of film condensate heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shang, D. (2010). Heat and Mass Transfer on Laminar Forced Film Condensation of Pure Vapour. In: Theory of Heat Transfer with Forced Convection Film Flows. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12581-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12581-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12580-5

  • Online ISBN: 978-3-642-12581-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics