Skip to main content

Dynamic Finite Element Analysis

  • Chapter
  • First Online:
  • 1340 Accesses

Abstract

A great deal of work has been published on finite element techniques.

This chapter presents the linear and non-linear dynamic finite element analysis intended to be used for nuclear facilities. Plasticity and cracking models are included. Solid isoparametric elements, panel and line elements are included which represent various materials. Solution procedures are recommended. Programs ISOPAR, F-BANG and other computer packages are recommend for the dynamic non-linear analysis of structures for nuclear facilities with and without cracking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    [Wilkins M.L.,”Calulations of Elastic Plastic Flow,” Meth, Comp. Phys. 3 (Academic Press), 211–263 (1964).]

References

  1. Akyuz. F.A., and Merwin. J.A. Solution of non-linear problems of elastoplasticity by finite element method. J. AIAA, 6,1968.

    Google Scholar 

  2. Bangash, M.Y.H. The Automated three-dimensional cracking analysis of prestressed concrete vessels, Proc. 6th Int. Conf. Struct. Mech. Reactor Technology. Paper H3/2 Paris 1981

    Google Scholar 

  3. Bangash, M.Y.H. The structural Integrity of concrete containment vessels under external impact. Proc. 6th Inter. Conf. Struc. Mech. React. Technology Paper J7/6, Paris, 1981.

    Google Scholar 

  4. Bangash, M.Y.H. Reactor Pressure Vessel Design and Practice. Prog. Nucl. Energy, 10, 69–124, 1982

    Article  Google Scholar 

  5. Bangash, M.Y.H. The simulation of endochronic model in the cracking analysis of PCPV. Proc. 9th Int. Conf. Struct. Mech. Reactor Tech. vol 4 pp 333–40, Lausanne, Switzerland 1987.

    Google Scholar 

  6. Bangash, M.Y.H. Manual of numerical methods in concrete. Thomas Telford, London. 2001 p. 918.

    Google Scholar 

  7. Bangash, M.Y.H. Explosion Resistant Buildings, Springer Verlag, Heidelberg, 2006, p. 783

    Google Scholar 

  8. Bangash, M.Y.H. Shock, Impact and Explosion. Structural Analysis and Design. Springer Verlag, Heidelberg 2009 pp.1365

    Google Scholar 

  9. Bangash, M.Y.H. Earthquake Resistant Buildings. Springer Verlag, Heidelberg. Inpress to be published in 2010

    Google Scholar 

  10. Banthia, N.P. Impact, resistance of concrete Ph.D. Thesis University of British Columbia, Canada 1987.

    Google Scholar 

  11. Bathe. K. J. and Wilson. E. L. Stability and accuracy analysis of direct integration methods. Earthquake Engineering Structural Dynamics 1, 1973, pp. 283–291.

    Article  Google Scholar 

  12. Bathe, K. J. Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  13. Burden. R. L. and Faires. J. D. Numerical Analysis. Prindle, Weber and Schmidt, Boston, 1985.

    Google Scholar 

  14. Craig R.R. Structural dynamics: An introduction to computer methods, Wiley, New York, 1981

    Google Scholar 

  15. Hallquist. J.O. et al. Sliding interfaces with contact-impact in large scale Lagrangian computations. Comp. Methods. Appl. Mech. Eng., 51, 107–37 1985.

    Google Scholar 

  16. Hildebrand, F. B. Introduction to Numerical Analysis. McGraw Hill, New York, NY, 1956.

    MATH  Google Scholar 

  17. Hughes-Hallet, D., et al. Calculus. Wiley, New York, NY, 1994.

    Google Scholar 

  18. Keierleber, C. W. Higher-Order Explicit and Implicit Dynamic Time Integration Methods. University of Nebraska, Lincoln. NE, 2003.

    Google Scholar 

  19. Phillips D.V. Zienkiewicz O.C. Finite Element Non-linear Analysis of Concrete Structures. Proc. Inst. Civ. Eng. Res Theory. 61, 1976.

    Google Scholar 

  20. Tedesco, J. W., McDougal. W. G., and Ross, C. A. Structural Dynamics, Addison-Wesley Longman, Menlo Park, CA, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 2010 M.Y.H. Bangash

About this chapter

Cite this chapter

Bangash, M. (2011). Dynamic Finite Element Analysis. In: Structures for Nuclear Facilities. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12560-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12560-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12559-1

  • Online ISBN: 978-3-642-12560-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics