Advertisement

Modeling Joint Synergies to Synthesize Realistic Movements

  • Matthieu Aubry
  • Frédéric Julliard
  • Sylvie Gibet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5934)

Abstract

This paper presents a new method to generate arm gestures which reproduces the dynamical properties of human movements. We describe a model of synergy, defined as a coordinative structure responsible for the flexible organization of joints over time when performing a movement. We propose a generic method which incorporates this synergy model into a motion controller system based on any iterative inverse kinematics technique. We show that this method is independent of the task and can be parametrized to suit an individual using a novel learning algorithm based on a motion capture database. The method yields different models of synergies for reaching tasks that are confronted to the same set of example motions. The quantitative results obtained allow us to select the best model of synergies for reaching movements and prove that our method is independent of the inverse kinematic technique used for the motion controller.

Keywords

Virtual Humanoids Movement Synthesis Synergy Reaching Gesture Joint Synergies Movement Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press, Oxford (1967)Google Scholar
  2. 2.
    Latash, M.L.: Synergy. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  3. 3.
    Brand, M., Hertzmann, A.: Style machines. In: SIGGRAPH 2000: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 183–192. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  4. 4.
    Li, Y., Wang, T., Shum, H.-Y.: Motion texture: a two-level statistical model for character motion synthesis. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 465–472. ACM, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Gibet, S., Marteau, P.F.: Expressive gesture animation based on non parametric learning of sensory-motor models. In: Computer Animation and Social Agents, pp. 465–472. ACM, New York (2003)Google Scholar
  6. 6.
    Rose, C.F., Sloan, P.-P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Computer Graphics Forum 20, 239–250 (2001)CrossRefGoogle Scholar
  7. 7.
    Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Liu, Z., Zhou, L.: Key-styling: learning motion style for real-time synthesis of 3d animation. Computer Animation and Virtual Worlds 17(3-4), 229–237 (2006)CrossRefGoogle Scholar
  9. 9.
    Ong, E.-J., Hilton, A.: Learnt inverse kinematics for animation synthesis. Graphical Models 68(5-6), 472–483 (2006)CrossRefGoogle Scholar
  10. 10.
    Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)CrossRefGoogle Scholar
  11. 11.
    Oyama, E., Agah, A., MacDorman, K.F., Maeda, T., Tachi, S.: A modular neural network architecture for inverse kinematics model learning. Neurocomputing 38-40, 797–805 (2001)CrossRefGoogle Scholar
  12. 12.
    Chai, J., Hodgins, J.K.: Constraint-based motion optimization using a statistical dynamic model. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 papers, p. 8. ACM, New York (2007)Google Scholar
  13. 13.
    Baerlocher, P., Boulic, R.: An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20(6), 402–417 (2004)CrossRefGoogle Scholar
  14. 14.
    Le Callennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints. Graphical Models 68(2), 175–193 (2006)CrossRefGoogle Scholar
  15. 15.
    Yang, F., Ding, L., Yang, C., Yuan, X.: An algorithm for simulating human arm movement considering the comfort level. Simulation Modelling Practice and Theory 13(5), 437–449 (2005)CrossRefGoogle Scholar
  16. 16.
    Komura, T., Kuroda, A., Kudoh, S., Tai, C.-L., Shinagawa, Y.: An inverse kinematics method for 3d figures with motion data. In: Computer Graphics International, pp. 266–271 (2003)Google Scholar
  17. 17.
    Raunhardt, D., Boulic, R.: Motion constraint. The Visual Computer 25(5), 509–518 (2009)CrossRefGoogle Scholar
  18. 18.
    Tournier, M., Wu, X., Courty, N., Arnaud, E., Reveret, L.: Motion compression using principal geodesics analysis. Eurographics 28(2) (April 2009) (to appear)Google Scholar
  19. 19.
    Gibet, S., Marteau, P.F.: A self-organized model for the control, planning and learning of nonlinear multi-dimensional systems using a sensory feedback. Applied Intelligence 4(4), 337–349 (1994)CrossRefGoogle Scholar
  20. 20.
    Buss, S.R., Kim, J.-S.: Selectively damped least squares for inverse kinematics. Journal of Graphics Tools 10(3), 37–49 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthieu Aubry
    • 1
  • Frédéric Julliard
    • 1
  • Sylvie Gibet
    • 2
    • 3
  1. 1.Université Européenne de Bretagne, LISyC/ENIB 
  2. 2.Université de Bretagne SudValoria
  3. 3.Centre INRIA Rennes Bretagne Atlantique 

Personalised recommendations