Gesture Saliency: A Context-Aware Analysis

  • Matei Mancas
  • Donald Glowinski
  • Gualtiero Volpe
  • Paolo Coletta
  • Antonio Camurri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5934)


This paper presents a motion attention model that aims at analyzing gesture saliency using context-related information at three different levels. At the first level, motion features are compared in the spatial context of the current video frame; at the intermediate level, salient behavior is analyzed on a short temporal context; at the third level, computation of saliency is extended to longer time windows. An attention/saliency index is computed at the three levels based on an information theory approach. This model can be considered as a preliminary step towards context-aware expressive gesture analysis.


Visual attention expressive gesture context-aware analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control processes. The psychology of learning and motivation: Advances in research and theory 2, 89–195 (1968)CrossRefGoogle Scholar
  2. 2.
    Berlyne, D.E., Berlyne, D.E.: Studies in the new experimental aesthetics (1974)Google Scholar
  3. 3.
    Camurri, A., Lagerlöf, I., Volpe, G.: Recognizing emotion from dance movement: Comparison of spectator recognition and automated techniques. International Journal of Human-Computer Studies 59, 213–225 (2003)CrossRefGoogle Scholar
  4. 4.
    Camurri, A., Volpe, G., De Poli, G., Leman, M.: Communicating Expressiveness and Affect in Multimodal Interactive Systems. IEEE Multimedia, pp. 43–53 (2005)Google Scholar
  5. 5.
    Cowan, N.: The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24(01), 87–114 (2001)CrossRefGoogle Scholar
  6. 6.
    Glowinski, D., Bracco, F., Chiorri, C., Atkinson, A., Coletta, P., Camurri, A.: An investigation of the minimal visual cues required to recognize emotions from human upper-body movements. In: Proceedings of ACM International Conference on Multimodal Interfaces (ICMI), Workshop on Affective Interaction in Natural Environments (AFFINE). ACM, New York (2008)Google Scholar
  7. 7.
    Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Emotional contagion Studies in emotion and social interaction. Editions de la Maison des sciences de l’homme (1994)Google Scholar
  8. 8.
    Kurtenbach, G., Hulteen, E.A.: Gestures in Human-Computer Communication. The Art of Human-Computer Interface Design, 309–317 (1992)Google Scholar
  9. 9.
    Mancas, M.: Computational attention: Towards attentive computers. Similar edition (2007); CIACO University DistributorsGoogle Scholar
  10. 10.
    Mancas, M.: Image perception: Relative influence of bottom-up and top-down attention (2008)Google Scholar
  11. 11.
    Mancas, M.: Relative influence of bottom-up and top-down attention. In: Paletta, L., Tsotsos, J.K. (eds.) WAPCV 2009. LNCS, vol. 5395, pp. 212–226. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Mancas, M., Couvreur, L., Gosselin, B., Macq, B.: Computational attention for event detection. In: Proceedings of ICVS Workshop on Computational Attention & Applications, WCAA 2007 (2007)Google Scholar
  13. 13.
    Mancas, M., Glowinski, D., Volpe, G., Camurri, A., Breteche, J., Demeyer, P.: Real-time motion attention and expressive gesture interfaces. Journal On Multimodal User Interfaces, JMUI (2009)Google Scholar
  14. 14.
    Mancas, M., Mancas-Thillou, C., Gosselin, B., Macq, B.: A rarity-based visual attention map–application to texture description. In: Proceedings of IEEE International Conference on Image Processing, pp. 445–448 (2007)Google Scholar
  15. 15.
    Mehrabian, A., Russell, J.A.: An approach to environmental psychology (1974)Google Scholar
  16. 16.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  17. 17.
    Vuilleumier, P., Armony, J., Dolan, R.: Reciprocal links between emotion and attention. In: Friston, K.J., Frith, C.D., Dolan, R.J., Price, C., Ashburner, J., Penny, W., Zeki, S., Frackowiak, R.S.J. (eds.) Human brain functions, pp. 419–444 (2003)Google Scholar
  18. 18.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology 54(6), 1063–1070 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matei Mancas
    • 1
  • Donald Glowinski
    • 2
  • Gualtiero Volpe
    • 2
  • Paolo Coletta
    • 2
  • Antonio Camurri
    • 2
  1. 1.F.P.Ms/IT Research Center/TCTS LabUniversity of MonsMonsBelgium
  2. 2.INFOMUS LabUniversity of GenoaItaly

Personalised recommendations