Skip to main content

Enabling Cutting-Edge Semiconductor Simulation through Grid Technology

  • Conference paper
Book cover Large-Scale Scientific Computing (LSSC 2009)

Abstract

The progressive CMOS scaling drives the success of the global semiconductor industry. Detailed knowledge of transistor behaviour is necessary to overcome the many fundamental challenges faced by chip and systems designers. Grid technology has enabled the constantly increasing statistical variability introduced by discreteness of charge and matter to be examined in unprecedented detail. Over 200,000 transistors subject to random discrete dopants variability have been simulated, the results of which provide detailed insight into underlying physical processes. This paper outlines recent scientific results of the nanoCMOS project, and describes the way in which the scientific goals have been reflected in the grid-based e-infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkeley SPICE, http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/

  2. Ganga webpage, http://ganga.web.cern.ch/ganga/

  3. Globus Security Infrastructure, http://www.globus.org/security

  4. GridSAM — Grid Job Submission and Monitoring Web Service, http://gridsam.sourceforge.net/

  5. International technology roadmap for semiconductors (2005), http://www.itrs.net/

  6. Internet2 Shibboleth Architecture and Protocols, http://shibboleth.internet2.edu

  7. Scotgrid webpage, http://www.scotgrid.ac.uk

  8. Storage Resource Broker (SRB), http://www.sdsc.edu/srb/index.php

  9. Alfieri, R., et al.: VOMS: an authorization system for virtual organizations. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A., Doallo, R. (eds.) Across Grids 2003. LNCS, vol. 2970, pp. 33–40. Springer, Heidelberg (2004)

    Google Scholar 

  10. Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35(15), 7959–7965 (1987)

    Article  Google Scholar 

  11. Anjomshoaa, A., et al.: Job Submission Description Language (JSDL) Specification, Version 1.0 (2005), http://www.ogf.org/documents/GFD.56.pdf

  12. Basney, J., Humphrey, M., Welch, V.: The MyProxy Online Credential Repository. Software Practice and Experience 35(9), 801–816 (2005)

    Article  Google Scholar 

  13. Brown, A., Roy, G., Asenov, A.: Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Transactions on Electron Devices 54(11), 3056–3063 (2007)

    Article  Google Scholar 

  14. Chadwick, D.W., Otenko, A., Ball, E.: Role-based Access Control with X.509 Attribute Certificates. IEEE Internet Computing 7(2), 62–69 (2003)

    Article  Google Scholar 

  15. Edward, R., Zayas, R.: Andrew File System (AFSv3) Programmer’s Reference: Architectural Overview. Transarc Corporation, Pittsburgh (1991)

    Google Scholar 

  16. Frank, D.J., Taur, Y.: Design considerations for cmos near the limits of scaling. Solid State Electronics 46, 315–320 (2002)

    Article  Google Scholar 

  17. Han, L., Sinnott, R.O., Asenov, A., et al.: Towards a Grid-enabled Simulation Framework for nanoCMOS Electronics. In: 3rd IEEE International Conference on e-Science, Bangalore, India (December 2007)

    Google Scholar 

  18. Heinrich, J.: A guide to the Pearson type IV distribution. Technical report, University of Pennsylvania (2004)

    Google Scholar 

  19. Inaba, S., Okano, K., et al.: High performance 35 nm gate length CMOS with NO oxynitride gate dielectric and Ni salicide. IEEE Transactions on Electron Devices 49(12), 2263–2270 (2002)

    Article  Google Scholar 

  20. Kohl, J.T., Neuman, B.C., T’so, T.Y.: The Evolution of the Kerberos Authentication System. Distributed Open Systems, 78–94 (1994)

    Google Scholar 

  21. Millar, C., Reid, D., et al.: Accurate statistical description of random dopant induced threshold voltage variability. IEEE Electron Device Letters 29(8) (2008)

    Google Scholar 

  22. Nassif, S., et al.: High performance CMOS variability in the 65 nm regime and beyond. IEDM Digest of Technical Papers, pp. 569–571 (2007)

    Google Scholar 

  23. Reid, D., Millar, C., et al.: Prediction of random dopant induced threshold voltage fluctuations in nanoCMOS transistors. In: SISPAD 2008 (2008) (in publication)

    Google Scholar 

  24. Roy, G., Brown, A., et al.: Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs. IEEE Transactions on Electron Devices 53(12), 3063–3070 (2006)

    Article  Google Scholar 

  25. Sinnott, R.O., Asenov, A., et al.: Meeting the Design Challenges of nanoCMOS Electronics: An Introduction to an EPSRC pilot project. In: Proceedings of the UK e-Science All Hands Meeting (2006)

    Google Scholar 

  26. Sinnott, R.O., Asenov, A., et al.: Integrating Security Solutions to Support nanoCMOS Electronics Research. In: IEEE International Symposium on Parallel and Distributed Processing Systems with Applications, Sydney Australia (2008c)

    Google Scholar 

  27. Sinnott, R.O., Bayliss, C., et al.: Secure, Performance-Oriented Data Management for nanoCMOS Electronics. Submitted to e-Science 2008, Indiana, USA (December 2008d)

    Google Scholar 

  28. Sinnott, R.O., Chadwick, D., et al.: Advanced Security for Virtual Organizations: Exploring the Pros and Cons of Centralized vs Decentralized Security Models. In: 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2008), Lyon, France (2008a)

    Google Scholar 

  29. Sinnott, R.O., Stewart, G., et al.: Supporting Security-oriented Collaborative nanoCMOS Electronics e-Research. In: International Conference on Computational Science, Krakow, Poland (2008b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asenov, A. et al. (2010). Enabling Cutting-Edge Semiconductor Simulation through Grid Technology. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics