Advertisement

Diffraction Radiation in the Pre-wave (Fresnel) Zone

Chapter
  • 833 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 239)

Abstract

The notion of the formation (coherence) length introduced in the early 1950s (see detailed references in [1,2]) was described in the framework of classical electrodynamics in Sects. 1.2 and 2.2 for bremsstrahlung and polarization radiation mechanisms, respectively. The quantum-mechanical consideration of this problem provides the identical result [2]. The notion of the formation length appeared to be useful for describing not only electromagnetic, but also strong interactions [3,4]. The main physical idea underlying the notion of the formation length for polarization emission mechanisms (including transition radiation and diffraction radiation) is the interference of the radiation fields emitted from different points of the emitting substance along particle trajectory (see Sect. 2.2). This concept is very close to the Fresnel zone widely known in optics.

Keywords

Angular Distribution Transition Radiation Transition Radiation Intensity Lorentz Factor Fresnel Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ter-Mikaelyan, M.L.: High-Energy Electromagnetic Processes in Condensed Media. Wiley-Interscience, New York, NY (1972)Google Scholar
  2. 2.
    Baier, V.M., Katkov, V.M.: Concept of formation length in radiation theory. Phys. Rep. 409, 261 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Feinberg, E.L.: Rigid diffraction processes at high energies. Phys.-Uspekhi 58, 193 (1956)Google Scholar
  4. 4.
    Feinberg, E.L.: Hadron clusters and half-dressed particles in quantum field theory http://ufn.ru/en/articles/l980/10/a/. Sov. Phys. Usp. 23, 629 (1980)
  5. 5.
    Ahmanov, S.A., Nikitin, S.Yu.: Physical Optics. Moscow State University, Moscow (in Russian) (1998)Google Scholar
  6. 6.
    Verzilov, V.A.: Quantum field theory. Phys. Lett. A 273, 135 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Ginzburg, V.L., Frank, I.M.: Transition radiation in the pre-wave zone. Sov. Phys. JETP 16, 15 (1946)Google Scholar
  8. 8.
    Castellano, M., Verzilov, V., Catani, L. et al.: Search for the prewave zone effect in transition radiation. Phys. Rev. E 67, 015501(R) (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Karataev, P., Araki, S., Aryshev, A. et al.: Experimental observation and investigation of the prewave zone effect in optical diffraction radiation. Phys. Rev. ST Accel. Beams 11, 032804 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Ginzburg, V.L., Tsytovich, V.N.: Transition Radiation and Transition Scattering. Higler, Bristol (1990)Google Scholar
  11. 11.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, (1987)Google Scholar
  12. 12.
    Luke, C.L., Yuan, C.L., Wang, H., Uto, Prunster, S.: Formation-zone effect in transition radiation due to ultrarelativistic particles. Phys. Rev. Lett. 25(v), 1513 (1970)ADSGoogle Scholar
  13. 13.
    Jackson, J.D.: The Classical Electrodynamics. New York, NY (1998)Google Scholar
  14. 14.
    Potylitsyn, A.P.: Image of Optical Diffraction Radiation (ODR) Source and Spatial Resolution of ODR Beam Profile Monitor. In: Wiedemann, H. (ed.) Advanced Radiation Sources and Applications, p. 149, Springer Dordrecht (2006)Google Scholar
  15. 15.
    Bosch, R.A.: Focusing of infrared edge and synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 431, 320 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Bosch, R.A.: Extraction of edge radiation within a straight. Phys. Rev. ST-AB 5, 020701 (2002)ADSGoogle Scholar
  17. 17.
    Kalinin, B.N., Naumenko, G.N., Potylitsyn, A.P. et al.: Measurement of the angular characteristics of transition radiation in near and far zones. JETP Lett. 84, 136, (2006)CrossRefGoogle Scholar
  18. 18.
    Aleinik, A.N., Chefonov, O.V., Kalinin, B.N. et al.: Low-energy electron-beam diagnostics based on the optical transition radiation. Nucl. Instrum. Methods Phys. Res. B 201, 34 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Potylitsyn, P.: Transition radiation and diffraction radiation. Similarities and differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Karataev, P.V.: Prewave zone effect in transition and diffraction radiation: Problems and solutions. Phys. Lett. A 345, 428 (2005)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Dnestrovskiy, Yu.N., Kostomarov D.P.: Radiation of ultra relativistic charges moving across round aperture in flat screen. Sov. Phys. Dokl. 4, 158 (1959).ADSGoogle Scholar
  22. 22.
    Castellano, M., Verzilov, V.: Spatial resolution in optical transition radiation beam diagnostics. Phys. Rev. ST-AB 1, 062801 (1998)ADSGoogle Scholar
  23. 23.
    Rule, D.W., Fiorito, R.B.: Imaging micron-sized beams with optical transition radiation. AIP Conf. Proc. 229, 315 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    Potylitsyn, A.P., Rezaev, R.O.: Focusing of transition radiation and diffraction radiation from concave targets. Nucl. Instrum. Methods Phys. Res. B 252, 44 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Potylitsyn, A.P.: Scattering of coherent diffraction radiation by a short electron bunch. Nucl. Instrum. Methods Phys. Res. A 455, 213 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Ryazanov, M.I., Tilnin, I.S.: Transition Radiation of ultra relativistic particle from curved surface of media boundary. Sov. Phys. JETP 71, 2079 (1976)Google Scholar
  27. 27.
    Winter, A., Tonutti, M., Casalbuoni, S., et al.: Bunch length measurement at the SLS Linac using Electro Optical Techniques. Proceedings of the ERAC 2004, Lucerne, Switzerland, p. 253 (2004)Google Scholar
  28. 28.
    Bolotovskiy, B.M., Galst’yan, E.A.: Diffraction and diffraction radiation. Phys.-Uspekhi 43, 755 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.National Research Nuclear University, MEPhIMoscowRussia
  3. 3.National Research Nuclear University, MEPhIMoscowRussia

Personalised recommendations